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ABSTRACT              
 

This research work presents the PID controller in a conventional scheme, a standard split range 

scheme, and a variable range of split range scheme for temperature control of the MISO (multiple 

input single output) water tank system (mixing process). A MISO system is considered for the 

proposed work as most practical systems comprise numerous MISO systems. Initially, in all the 

schemes, the controller gain parameters are tuned using a classical Ziegler-Nichols (Z-N) tuning 

method for the different cases under consideration within the working range of temperature, and 

the performances of the controller for all the considered cases are analyzed in terms of settling 

time. At last, the simulation results in all the control schemes are obtained using their best value 

of the controller gain parameters (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑) for the different temperature setpoints in terms 

of steady-state error and settling time, and compared for the same. It was observed that the variable 

range of split range PID controller outperformed the conventional PID controller as well as a 

standard split range PID controller. Investigations are also conducted on the basis of the effect of 

dead time in the valve, the effect of disturbance in the process, and utility consumption.   

To enhance the performance of the variable range of split range PID (SR-PID) controller, this work 

uses nature-inspired optimization techniques such as particle swarm optimization (PSO), whale 

optimization algorithm (WOA), and moth flame optimization (MFO) for optimizing the gain 

parameters of the controller. The simulation results are obtained for the various temperature 

setpoints. Based on these simulation results, a comparative study is made for the controller 

performance using the Z-N method, PSO, WOA, and MFO algorithms on the basis of settling time. 

The results show that as compared to PSO and WOA, MFO based controller provides better 

performance than the Z-N-based controller in all the situations, i.e., the effect of dead time in the 

valve, the effect of the process disturbance, and utility consumption.  

Further, to improve the performance of the system, this work proposes modifications in the original 

MFO algorithm in three phases: change in the spiral path, change in the initial population based 

on the opposition theory, and change in the selection of the flames for updating mechanism. A new 

version of the MFO algorithm is developed by combining all the modifications mentioned above. 

The performance of the variable range SR-PID controller using the proposed algorithms is 

investigated for the different temperature setpoints within the working range, and compared with 
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the controller performance using the original MFO algorithm in terms of settling time. To show 

the effectiveness of the controller using a new version of the MFO algorithm (namely, the EMFO 

algorithm), the investigations are carried out for the effect of system dynamics, the effect of 

disturbance on the process, and utility consumption, and also compared with the performance of 

controller using the original MFO algorithm. The results demonstrate that the EMFO algorithm-

based controller provides superior performance as compared to the original MFO algorithm-based 

controller in all the scenarios.  

A comparison between the original MFO and EMFO algorithms is made with regard to the values 

of fitness function and its convergence as the iterations progressed. It is shown that the proposed 

EMFO algorithm converged fast with respect to the fitness function, as compared to the original 

MFO algorithm. 

Further, this work proposes an online tuning approach using the Moth flame optimization (MFO) 

algorithm to optimize the gain parameters of the SR-PID controller to control the temperature of 

the mixing process. By considering the online tuning approach, the controller gain parameters are 

updated continuously after a definite time interval while the actual plant is running. The controller's 

performance for the individual temperature setpoints is investigated in terms of settling time, and 

compared with the offline tuning approach with the MFO algorithm. The simulation results show 

a significant improvement with the online tuning approach as compared to the offline approach.  

In order to further improvement in the system performance, this work uses the improved versions 

of the MFO algorithm-based online tuning of the controller to control the temperature of the 

mixing process. To study the efficacy of controller tuned online with the proposed EMFO 

algorithm, the investigations are carried out for all the scenarios and compared with the 

performance of controller tuned online using the original MFO algorithm. The EMFO algorithm-

based online tuning approach provides better performance as compared to the MFO algorithm 

(with offline and online tuning approaches) in all the scenarios. 

Before implementing the developed EMFO algorithm in the actual plant, it is necessary to 

investigate the performance of the same in the real environment. Therefore, in this research work, 

an electrical analogous model of the practical environment is simulated for investigation by 

considering several effects, namely imperfect insulation, density, viscosity, and compressibility. 
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Further, to check the effectiveness of the proposed algorithm, the controller performance using the 

EMFO algorithm is compared with the performance using the original MFO algorithm. The 

validation results show a significant improvement in the case of EMFO-based controller with an 

online tuning method in comparison to MFO-based controller. Furthermore, investigations are also 

carried out for the effect of system dynamics, process disturbance, and utility consumption. It is 

concluded that the developed EMFO algorithm gives superior performance in a simulated real 

environment paving the way for possible implementation in practical situations. 
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    Chapter 1 

 

Introduction 

 

This chapter covers a background of Process Control, details about the process 

variables, control schemes, and tuning approaches being explored are 

discussed. To attain improved system performance, various studies on the 

process, controllers, tuning methods, and nature-inspired optimization 

techniques have been reported in the past. The survey of the literature is 

structured in chronological order (year-wise). The chapter also reports a list of 

observed research gaps which lay the foundation for the objectives of the 

dissertation and provides details about the outline of the dissertation. 

1.1    Introduction 
 

1.1.1   Process control 

Process control is an engineering discipline dealing with methods, structures, and algorithms 

to regulate the process’ output within the specified range. Basically, processes can be 

understood as a set of actions that perform the physical or chemical transformation in which 

the fluid or solid materials are optimally transformed into a more usable state. In the duration 

of transformation, a large number of internal and external atmospheric and surrounding 

conditions affect the performance of the processes, and usually, these surrounding conditions 

are considered as process variables (such as level, flow, pressure, temperature, volume, etc.) 

(Singh, 2009). Process control regulates and controls these process variables in such a way as 

to get desired output by utilizing the best possible resources, which enhances productivity and 

also ensures safety (Marlin, 1995). 

1.1.2   Process variables 

Process variables are generally those parameters or quantities which are being monitored or 

controlled within the specified limit. There are four primary variables that affect industrial 
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processes: level, flow, pressure, and temperature. In these process variables, the temperature is 

the most important variable in view of safety, quality, and production. Measurement of this 

variable is comparatively economical (due to its low-cost sensors) and easy. But it is difficult 

to maintain at its desired set-point value due to its inherent slow varying nature. Taking into 

account the above-mentioned characteristics of temperature control, and the wide scope in the 

process control industries, the temperature variable can be considered to be controlled. 

Process variables can be classified into two major categories:   

Input variables: These variables show the effect of environmental change on the process 

output (Bequette, 2003). Input variables can be categorized into two types, namely, 

manipulated and disturbance variables.  

➢ Manipulated Variables: These variables are controlled by the process operator 

manually or by an automatic control system in order to keep the controlled variables at 

the desired set-point value.  

➢ Disturbance Variables: The disturbance inputs are the variables that influence the 

process output as they cannot be controlled. 

Output variables: These variables are the process outputs that have a direct impact on the 

environment. Output variables are categorized as measured variables and unmeasured 

variables, which are defined on the basis of their measurement feasibility. Fig. 1.1 shows the 

input/output variables of a process. 

 

                                                 Fig. 1.1   Input/output representation of a process. 

 

 

Process 

Manipulated Variables 

Disturbance Variables 

Measured Variables 

Unmeasured Variables 

https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Thermodynamic_temperature


 

Chapter 1                                                                                                                              Introduction 

 

Page | 3  

 

1.1.3   Process control schemes 

There are various control schemes such as feedback, feedforward, feedforward-feedback, and 

advanced control schemes that are used in the process industries (Coughanowr & LeBlanc, 

2009, Naimi et al., 2022, Reyes-Lúa & Skogestad, 2020, Saxena et al., 2002; Seborg et al., 

2011). The description of the different elements in process control schemes is given as 

follows: 

Process: This is the main part of the control loop, which requires the control of some specific 

physical parameters. Generally, a process can be described as a collection of phenomena 

related to some industrial sequence. The most popular processes in the process industries are 

temperature control (boiler, distillation column), heat exchanger, and evaporator units. 

Measurement: The measurement unit measures the process variable and translates the 

measured quantity into an analogue representation (electrical voltage or current). This unit 

normally uses a sensor that conducts the initial measurement and energy conversion of a 

variable into equivalent electrical information. 

Controller: The controller is the part within the process control loop that interprets the 

sensor's readings and decides the appropriate control action based on an error signal which is 

the difference between the reference signal (reference value of the variable) and the actual 

output (measured indication of the controlled variable), and provides the output as a control 

signal to the final control element. 

Final control element: It is a part of the industrial process control loop that produces the 

actuating signal corresponding to the control signal generated by the controller. The most 

important part of the final control element is an actuator which actuates the valve in response 

to the control signal from a controller. 

1.1.3.1   Feedback control scheme   

In the feedback control scheme, input or controlling action depends on the output or change in 

output (controlled variable). In this type of system, the controlled variable is measured and 

used to estimate the error, i.e., the difference between the actual output and the desired value. 

The schematic of the feedback control scheme is depicted in Fig. 1.2.  
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Fig. 1.2   Schematic diagram of a feedback control scheme. 

Advantages of feedback control 

➢ The controller modifies the controlled variable (influenced by disturbances) in 

accordance with the set-point value. 

➢ This scheme does not necessitate the identification of any process (i.e., the dynamics 

of the process model) and measurement of the disturbances.  

   Disadvantages of feedback control 

➢ It waits until the effect of the disturbances has been felt by the system before 

controller action takes place.  

➢ This control scheme is not suitable for processes having large time delays. 

➢ This scheme may produce instability in the closed-loop response. 

In the feedback control schemes, the PID controller is the most widely used controller due to 

its simple design, ease of implementation, and maintenance. In most of the control system 

applications, 90% of control modes are of PID type (Åström & Hägglund, 2001). It makes use 

of three elements: proportional term, integral term, and derivative term. The mathematical 

representation of the PID controller usually used in process control with combined action is 

illustrated by Eq. 1.1 (Goud & Swarnkar, 2019): 
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 𝑢(𝑡) = 𝐾𝑐 (𝑒(𝑡) +
1

𝜏𝐼
∫ 𝑒(𝑡)𝑑𝑡 + 𝜏𝐷

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) (1.1) 

However, the same equation may be modified as Eq. 1.2 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
 (1.2) 

 where,  

To achieve the satisfactory performance of the system, each parameter of the PID controller 

should be tuned. 

Tuning of the controller 

Tuning is referred to as determining the best possible gain parameters of a PID controller for 

the satisfactory response of the system. There are various classical tuning approaches 

reported in the literature such as the Trial and Error method (Bucz & Kozáková, 2018), 

Cohen-Coon method (Cohen & Coon, 1953), Åström and Hägglund method (Åström & 

Hägglund, 1984), Ziegler–Nichols method (Ziegler & Nichols, 1942), etc.  

Trial and error method: This method is popularly known as empirical gain tuning which is 

based on the experiment and used with the feedback loop only (Bucz & Kozáková, 2018). In 

this method, controller settings (gain of the controllers such as Kp, Ki, and Kd) are chosen 

based on the observation of the deviation in the system response. The trial-and-error method 

works on the following steps: 

➢ Initially, the integral and derivative terms of the PID controller are set to be ideally zero 

by setting integral time (𝜏𝐼) very high (ideally infinite) and derivative gain (𝜏𝐷) very 

small (ideally zero), and the proportional gain is increased until the system’s response 

       u(t) - the control signal in the time domain 

 𝐾𝑝 = 𝐾𝑐 - proportional gain 

𝐾𝑖 =
𝐾𝑐

𝜏𝐼
 - 𝜏𝐼, reset time or integral time and 𝐾𝑖, integral mode gain 

      𝐾𝑑 = 𝐾𝑐 𝜏𝐷 - 𝜏𝐷, derivative time and 𝐾𝑑, derivative mode gain 

      e(t) - the error signal in the time domain 
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oscillates. This increase of proportional gain should be in such a way that the system is 

always bound to be in stable condition. 

➢ Further, 𝜏𝐼  is adjusted by decreasing it in order to reduce the oscillation and obtain the 

minimum steady-state error, but at the same time, it may increase the overshoot.   

➢ Finally, 𝜏𝐷 is increased to achieve the set-point quickly by minimizing the overshoot that 

occurred due to integral control action. 

Cohen-Coon method: In this tuning method, an open-loop transient is induced by changing a 

step signal to the control valve, and hence, the step response is recorded at the output. The 

response of the system obtained is known as the process reaction curve (shown in Fig. 1.3) 

and usually, exhibits an S shape.  

To compute the values of time constant, T, and transport lag, Td, the tangent is drawn to the 

curve at the point of inflection, as shown in Fig. 1.3. The intersection of the tangent line with 

the time axis is the transport lag, Td, and the first-order time constant T is obtained as 𝑇 =
𝐵𝑢

𝑆
. 

where, 𝐵𝑢 is the ultimate value of B at large t, and S is the slope of the tangent line. The 

steady-state gain can be determined as 𝐾𝑝 =
𝐵𝑢

𝑀
, where M is the magnitude of the step signal. 

Using the values of Kp, T, and Td, the controller settings (Kc, 𝜏𝐼, 𝜏𝑑) can be determined as per 

Table 1.1.  

Åström and Hägglund method: It is popularly known as the relay-based auto-tuning method. 

In this method, a push-button tuning is used to act as an ON/OFF controller. The auto-tuning 

 

Fig. 1.3   Process reaction curve showing graphical representation for computing the first-order transport lag  

model. (Source: Seborg et al., 2011) 
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method initiates with the identification of definite and repeated oscillation patterns around the 

nominal value. When such a frequency response pattern is achieved, the period (𝑇𝑢), 

amplitude (A) of its oscillation and the relay amplitude (h) for the first harmonic are computed 

and utilized to determine the PID controller settings (Åström & Hägglund, 1995; Hang et al., 

2002). The computation of ultimate gain is given by Eq. 1.3. 

𝐾𝑢 =
4ℎ

𝜋𝐴
 (1.3) 

The controller settings (Kc, 𝜏𝐼, 𝜏𝑑) can be determined by using Table 1.1. 

Table 1.1   Tuning formula for PID Controller. (George et al., 2021) 

Tuning methods 𝐊𝐜 𝝉𝑰 𝝉𝑫 

Ziegler–Nichols method 0.6𝐾𝑢 
𝑃𝑢

2
 

𝑃𝑢

8
 

Cohen-Coon method 
𝑇

𝐾𝑝𝑇𝑑

 (
4

3
+

𝑇𝑑

4𝑇
 ) 𝑇𝑑  (

32 + 6𝑇𝑑/𝑇

13 + 8𝑇𝑑/𝑇
 ) 𝑇𝑑  (

4

11 + 2𝑇𝑑/𝑇
 ) 

Åström-Hägglund method 
0.67

𝐾𝑢

 𝑇𝑢 
𝑇𝑢

6
 

Ziegler–Nichols method: This method is the most widely acceptable tuning technique, 

developed by J.G. Ziegler and N.B. Nichols in 1942 (Ziegler & Nichols, 1942). It has the 

following steps for tuning the PID controller (Bequette, 2003; Ziegler & Nichols, 1942). 

➢ Initially, the integral and derivative terms of the PID controller are set to be disabled 

(ideally zero) by setting, τI very high (ideally infinite) and τD very small (ideally zero).  

➢ The proportional gain (Kp) of the controller is increased from zero to some critical 

value (𝐾𝑢 i.e., ultimate gain) at which sustained oscillations occur. The period of 

oscillations is noted (𝑃𝑢). 

➢ From the values of Ku and Pu obtained above, the values of controller parameters (Kc, 

𝜏𝐼, 𝜏𝑑) can be determined as per Table 1.1. 

Out of the above-discussed classical tuning methods, the Ziegler–Nichols method is widely used 

in industry due to its popularity and simplicity (Bharat et al., 2019; Sen et al., 2015). Due to 

https://en.wikipedia.org/wiki/John_G._Ziegler
https://en.wikipedia.org/wiki/Nathaniel_B._Nichols
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the inherent shortcomings of the feedback controller, it is essential to discuss the other control 

schemes. 

1.1.3.2   Feedforward control scheme 

The basic concept of feedforward control is to detect or measure the disturbances and control 

them before affecting the process and therefore, eliminate the impact of external disturbances 

before disturbing the process. The feedforward control scheme is illustrated in Fig. 1.4.    

 
Fig. 1.4   Schematic diagram of a feedforward control scheme. 

While practically realizing the feedforward controller, feedforward transfer function, 𝐺𝑓(𝑠) 

may take the form of a lead expression, such as 𝐺𝑓(𝑠) = (1 + 𝜏𝑓𝑠). As realization of 𝐺𝑓(𝑠) =

(1 + 𝜏𝑓𝑠) is practically not possible, it is necessary to approximate (1 + 𝜏𝑓𝑠) by a lead-lag 

expression (Coughanowr & LeBlanc, 2009), such as 

𝐺𝑓(𝑠) =
(1 + 𝜏𝑓𝑠)

(1 + 𝛽𝜏𝑓𝑠)
      (1.4) 

where, 𝛽<<1 is constant, and 𝜏𝑓 indicates feedforward time constant.    

To employ feedforward control effectively, at least an approximate process model should be 

available, and all the disturbances should be accurately measured. 

To describe the tuning rules for feedforward control (Coughanowr & LeBlanc, 2009), the 

transfer function for the feedforward controller is considered ideally in lead-lag compensator 

form with gain 𝐾𝑓, and may be written by Eq. 1.5. 
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𝐺𝑓(𝑠) =
𝐾𝑓(𝑇1𝑠 + 1)

(𝑇2𝑠 + 1)
 (1.5) 

where, 𝐾𝑓, 𝑇1, and 𝑇2 are the adjustable parameters of the feedforward controller, 𝑇1, and 𝑇2 

are the time constants of the dynamic part of the feedforward controller, respectively. The 

tuning of these parameters (𝐾𝑓, 𝑇1, and 𝑇2) is presented below: 

Initially, the value of feedforward controller gain, Kf put so as to compensate ultimately for a 

step-change in disturbance variable, d. This means that the dynamic portion of Gf(s) in Eq. 1.5 

will be removed, and only the gain Kf will remain. The lead (i.e., 𝑇1> 𝑇2)  and lag (i.e., 𝑇1< 𝑇2) 

predominancy in Gf(s) will be estimated by observing the open-loop response while making a 

step-change in the disturbance variable. Fig. 1.5 shows responses for the output, C with 

respect to time, t, and where tp is the peak time. The values of  𝑇1 and 𝑇2 in Eq. 1.5 can be 

determined by Table 1.2.  

 
                                           (a)                                                                                        (b) 

Fig. 1.5   Open-loop response to compute lead-lag time constants (T1 and T2) in feedforward tuning rules: (a) 

Lead must predominate in Gf; (b) lag must predominate in Gf. (Source: Coughanowr & LeBlanc, 2009) 

Table 1.2   Feedforward control tuning parameters. 

Predominant mode T1 T2 

Lead 1.5𝑡𝑃 0.7𝑡𝑃 

Lag 0.7𝑡𝑃 1.5𝑡𝑃 

 

Besides the above discussion, other tuning procedures are described in the literature (Adam & 

Marchetti, 2004; Coughanowr & LeBlanc, 2009; Guzmán & Hägglund, 2021; Guzmána & 

Hägglund, 2011; Montoya-Ríos et al., 2020; Rodríguez et al., 2020; Seborg et al., 2011; 

Shinskey, 1996; Veronesi et al., 2017).  
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Advantages 

➢ Feedforward control works before the controlled output is affected and provides 

superior performance with an accurate model. 

➢ It does not cause instability in the closed-loop response. 

Disadvantages 

➢ This scheme necessitates the identification of all the disturbances and their direct 

measurement. 

➢ Feedforward control requires good knowledge of the process model. 

Since the feedforward controller is neither realizable nor can be used alone, it is generally 

used in conjunction with the feedback controller. 

1.1.3.3   Feedforward-Feedback control scheme 

A combined feedforward-feedback control scheme provides better performance as the 

limitations of feedforward control are taken care of by feedback control and vice versa. The 

schematic diagram of the feedforward-feedback control scheme is shown in Fig. 1.6. 

 

Fig. 1.6   Block diagram of a feedforward-feedback control scheme. 
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However, these basic control schemes provide an unsatisfactory response in the presence of 

process lag, large disturbances, and modelling uncertainties; therefore, advanced process 

control schemes need to be investigated to improve the system's response.  

1.1.3.4   Advanced process control schemes 

The conventional feedback control scheme consists of one measurement and one 

manipulated variable in a single loop. But, most of the process models have been 

configured with more than one measurement, manipulated variables, and loops, which 

make the analysis more complex and tedious. These complexities can be handled by the 

advanced process control schemes, which are discussed as follow: 

Cascade control: The main drawback of the basic feedback control scheme is that it does 

not take control action until the process output variable deviates from its set point. The 

feedforward controller has significant improvements for processes having a large time 

constant or time delay in comparison to the feedback controller. However, the feedforward 

controller necessitates measuring the disturbances correctly as well as the availability of a 

model for computing the controller output. The cascade control scheme is an alternative 

strategy that can significantly improve the dynamic response to disturbances by utilizing a 

secondary feedback controller or a secondary measurement. A block diagram of the cascade 

control scheme is shown in Fig. 1.7.  

 

Fig. 1.7    Block diagram of Cascade control. 
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It consists of one manipulated variable and more than one measurement and two loops, 

namely, primary loop and secondary loop. It is helpful only when the secondary control loop 

(inner loop) has faster dynamics than the primary control loop to eliminate disturbances.  

The cascade control scheme has more sensors, transmitters, and controllers. Therefore, the 

systems become more complex, and tuning also becomes more tedious. This control scheme 

has more than one controller for one manipulated variable. It is not applicable for systems that 

have more than one manipulated variable and one controller variable (For example, Multiple 

input single output (MISO) system). For such systems, a split range control strategy has wide 

scope in the process industries (P. Gupta et al., 2015; Krishnamoorthy, 2020; Reyes-Lúa & 

Skogestad, 2020; Yewale et al., 2020).  

Split range control: Split range control scheme is used when a single controller is employed 

to control two or more valves (final-control elements). In such systems, the controller uses 

two or more manipulated variables to maintain one controlled variable at the set-point. The 

split range control scheme becomes unique as compared to the above-mentioned control 

schemes because two or more manipulated variables (MV) cover the total steady-state range 

of the controlled variable (Reyes-Lúa et al., 2018). 

Fig. 1.8 shows the block diagram of a split range control scheme with two inputs (u1 and u2) 

for one output (y). The output is controlled by inputs, u1 and u2 (Reyes-Lúa & Skogestad, 

2019).  

Fig. 1.8   Classical split range control for the case with two inputs and one output. 
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Usually, the classical split range scheme is used in which the controller output range is 

divided into two ranges, from 0 to 50% and 50 to 100% (Reyes-Lúa & Skogestad, 2020). 

Using this configuration, the controller may take effective action to control the output variable 

by manipulating the two input variables. To further improve system performance, variable 

range of split range configuration of controller output can be used. 

 

The conventional tuning approaches have few drawbacks. In most cases, they do not 

provide effective tuning of controller gain parameters, resulting in oscillations and a 

significant overshoot (Bingul & Karahan, 2018; Chidambaram & Saxena, 2018; Solihin et al., 

2011). Hence, to overcome these drawbacks and to ensure system stability, the performance of 

the controller can be optimized through nature-inspired optimization techniques. 

The conventional tuning methods are mostly considered as offline tuning approach, which is 

used for tuning the gain parameters of the controller. In offline tuning, parameters are 

obtained before running the process, and these parameters remain fixed during the run of the 

process. To further enhance the controller performance, many researchers are not only using 

the offline tuning approach but also updating the controller gain parameters continuously 

online using nature-inspired optimization algorithms (Davanipour et al., 2018; El-Gendy et 

al., 2020; X. Zhou et al., 2019). 

1.1.4   Nature-inspired optimization techniques 

Nature-inspired optimization techniques are a set of problem-solving approaches which are 

derived from natural processes. In recent years, nature-inspired optimization algorithms have 

shown their efficacy in many research areas (Cui, Li, et al., 2019; Cui, Zhang, et al., 2019; 

Mohanty, 2019; Ning et al., 2018; Cortés et al., 2018; Xiong et al., 2018; Pathak & Singh, 

2017; Guha et al., 2016; Odili et al., 2017; Sharma & Saikia, 2015; Wang et al., 2014; Bansal 

et al., 2014; Gandomi & Alavi, 2012). These optimization techniques provide adaptive 

computational approaches for complex problems and a wide range of engineering 

applications.  

Nature-inspired techniques are subclass of optimization techniques. Optimization has a broad 

range of applications in engineering as it offers a very powerful methodology for modelling 
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and problem-solving (Ali et al., 2015, Kumar et al., 2014, Yalsavar et al., 2022, Zarachoff et 

al., 2018). The methods available for obtaining the solution of optimization problems can be 

broadly categorized as deterministic and stochastic methods, as shown in Fig. 1.9. The 

deterministic methods follow the same path in repeated runs to provide the same solution, 

which is the optimal solution but is rigorous, time-consuming and quite often needs the 

gradient information about the objective function. On the other hand, the stochastic or non-

deterministic methods provide different solutions in different runs because of the inherent 

randomness in the algorithm. The advantage of these methods is that they can provide near-

optimal solutions to complex problems in a reasonable time as they explore different regions 

of solution space simultaneously.  

 

Fig. 1.9    Classification of optimization algorithms. 
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There are two types of derivative-free stochastic optimization algorithms: heuristic algorithms 

and metaheuristic algorithms (Nikolic, 2015; Ramachandran et al., 2019; Siddique & Adeli, 

2015). Heuristic algorithms find a solution by trial and error. The general problem with 

heuristic algorithms is that the obtained solution is not guaranteed to be the optimal one. 

The second derivative-free stochastic algorithms are metaheuristic algorithms that can be 

used to solve more complex problems and very often provides better solutions than heuristic 

algorithms. Metaheuristic algorithms are based on principles of exploration and exploitation 

(X.-S. Yang, 2012). Exploration seeks to explore the full search space in order to find the 

different solutions that are yet to be refined. Exploitation focuses on local region search by 

exploiting information that the region comprises an optimal solution. These algorithms have 

the ability not to get stuck in local minima. The meta-heuristic algorithms can be classified as 

population-based and neighborhood or trajectory-based, as seen in Fig. 1.9. 

Neighborhood or Trajectory-based algorithms such as simulated annealing (Kirkpatrick et 

al., 1983) and tabu search (Glover, 1989) evaluate only one potential solution at a time, and 

the solution moves across a trajectory to the next probable space and so on, creating a path 

towards the solution. In population-based algorithms, a set of random solutions move 

towards goals simultaneously. These algorithms work iteratively to identify a set of high-

performing solutions among them. 

Population-based algorithms are further classified into evolutionary and swarm-intelligence-

based algorithms. Evolutionary algorithms are fully based on Darwin’s concept of evolution 

and survival of the fittest. Adapting this method guarantees that superior species (or solutions 

in terms of algorithms) preserve their functional advantage over inferior ones. Various authors 

have used evolutionary algorithms (such as genetic algorithm, differential evaluation, etc.) in 

many fields (Alibakhshikenari et al., 2020; Dahunsi et al., 2020; Dangor et al., 2014; Dey et 

al., 2019; Sachdeva et al., 2011; Singla & Arora, 2012, Garg et al., 2021). Swarm 

intelligence is population-based algorithms or nature-inspired optimization algorithms that are 

the most popular and widely used in the area of engineering (Anaraki et al., 2018; Aruna & 

Jaya Christa, 2020; Cairone et al., 2018; Cedro & Wieczorkowski, 2019; Gupta et al., 2021; 

Hermawanto et al., 2020; Jha & Kumar, 2020; Kapri et al., 2020; Karroum et al., 2020; 
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Laddimath & Patil, 2019; Pedro et al., 2018; Zeng et al., 2020). The main reason for the 

popularity of swarm intelligence is that these algorithms often share information among 

various agents, allowing for self-organization and learning during the process to aid in high 

efficiency (T. K. Gupta & Raza, 2019). Hence, the swarm intelligence algorithms offer a good 

choice for optimizing the gains of the controller.  

Swarm intelligence is developed on the basis of collective behavior in self-organized systems 

(Gaing, 2004). These types of systems usually comprise a population of basic agents that 

interact locally with each other and with their surroundings. Generally, there is no centralized 

control structure that dictates how each agent should act, while local interactions among these 

agents frequently lead to the formation of global behavior. It may be seen in nature, for 

example, animal herding, birds flocking, fish schooling, ant colonies, and bee swarming. 

Different types of swarm intelligence-based algorithms have been proposed in the literature 

such as Ant colony optimization (Dorigo, 1992), Particle swarm optimization algorithm 

(Kennedy & Eberhart, 1995), Bacterial foraging (Passino, 2002), Fish swarm/school (Li et al., 

2002), Bee colony optimization (Teodorovic & Dell’ Orco, 2005), Bees swarm optimization 

(Drias et al., 2005), Cat swarm optimization (Chu et al., 2006), Virtual ant algorithm (X.-S. 

Yang et al., 2006), Good lattice swarm optimization (Su et al., 2007), Artificial bee colony 

(Karaboga & Basturk, 2007), Accelerated PSO (X.-S. Yang, 2008), Cuckoo search (X.-S. 

Yang & Suash Deb, 2009), Bat algorithm (X.-S. Yang, 2010), Firefly algorithm (Ali & Ahn, 

2015; X. S. Yang, 2010), Eagle strategy (X. S. Yang & Deb, 2010), Krill Herd (Gandomi & 

Alavi, 2012), Wolf search (Tang et al., 2012), Spider monkey optimization  (Bansal et al., 

2014), Moth flame optimization algorithm (Mirjalili, 2015), Whale optimization algorithm 

(Mirjalili & Lewis, 2016). In the last few years, nature-inspired optimization algorithms have 

attracted great attention from researchers in many fields (Cortés et al., 2018; Cui, Li, et al., 

2019; Cui, Zhang, et al., 2019; Maurya, et al., 2017; Ning et al., 2018; Pathak & Singh, 2017; 

Wang et al., 2014; Xiong et al., 2018). At present, a variety of these swarm intelligence 

optimization algorithms have been successively applied, for example, Particle Swarm 

Optimization (PSO) (Ahn et al., 2012; Amini et al., 2013; Cortés et al., 2018; Figueiredo et 

al., 2016; Goud & Swarnkar, 2019; Poddar et al., 2017; Sharma & Chhabra, 2021; Sohane & 

Agarwal, 2022; Wu et al., 2014), Cuckoo Search (CS) (Baset et al., 2018; Bhardwaj & 



 

Chapter 1                                                                                                                              Introduction 

 

Page | 17  

 

Agarwal, 2022; Cui et al., 2017; Jain et al., 2017; Zhang et al., 2018), Whale Optimization 

Algorithm (WOA) (Mosaad et al., 2019), Moth Flame Optimization (MFO) (Acharyulu et al., 

2020), Ant Colony Optimization (ACO) (Ning et al., 2018; Dorigo et al., 2006; Forcael et al., 

2014), Artificial Bee Colony (ABC) (Cui, Zhang, et al., 2019; Goud & Swarnkar, 2019; Wang 

et al., 2014), Bat Algorithm (BA) (Cai et al., 2016; Cui, Li, et al., 2019), Bacteria Foraging 

Optimization Algorithm (BFOA) (Yang et al., 2016), Crow Search Algorithm (CSA) (Ranjan 

& Chhabra, 2022), Glowworm Swarm Optimization (GSO) (Yu & Feng, 2018; Zshou & 

Dong, 2018), Krill Herd Algorithm (KHA) (Guha et al., 2016), and Grey Wolf Optimization 

(GWO) (Sharma & Saikia, 2015), etc. 

From the above discussion, keeping in view the importance of temperature control (Balaton 

et al., 2013; Greeshma et al., 2019; Mahmood et al., 2018; Waghmare et al., 2005) and the 

wide scope offered by the conventional controller (Dahunsi et al., 2020, Dangor et al., 2014; 

Goud & Swarnkar, 2019), the work undertaken here envisages investigating the performance 

of the temperature control of the MISO system using a PID controller in a split range control 

scheme. An investigation of the MISO system was considered for the proposed work because 

most of the practical systems comprise of numerous MISO systems. Further, the literature 

review on temperature control of MISO system, PID controller in the split range control 

scheme, controller tuning using the Z-N method, or nature-inspired optimization techniques 

has been reported in the next section. 

1.2   Literature review 

The purpose of this section is to present a review of various studies conducted in the field of 

temperature control using the split range controller and also, to examine the performance of 

the controller. The brief details about these studies are as follows:  
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Table 1.3   Literature survey on the temperature control, split range PID controller, and controller tuning methods. 

Research group Key points Remarks 

Reyes-Lúa and 

Skogestad  

(Reyes-Lúa & 

Skogestad, 2020)  

➢ Proposed a generalized split range control 

structure using a baton strategy.  

➢ This new strategy provided better 

performance by reducing approximately 

54.88% in the integrated absolute error 

value and 18.62% to 22.90% in the value 

of settling time, as compared to the 

conventional split range controller.  

➢ The authors used a generalized 

split range control for a particular 

temperature set-point and defined 

a definite range of the controller 

output (not automatically) for 

varying the manipulated 

variables. If the temperature set-

point changes, then the system's 

performance may degrade in 

terms of settling time.  

➢ The authors used the same type 

of manipulated variables (either 

cooling or heating) to reduce the 

error in one direction. Therefore, 

it can be said that they restricted 

the range of error correction.   

Reyes-Lúa and 

Skogestad  

(Reyes-Lúa & 

Skogestad, 2019) 

 

➢ The authors used mainly two structures 

(one is PI controller in a normal split 

range scheme, and the second used three 

conventional PI controllers) to control the 

room temperature.  

➢ Compared the controller performance and 

energy performance for both the 

structures. It was found to a reduction of 

7.66% in the energy cost, as compared to 

split range control, and also showed 

comparable performance in terms of 

settling time.  

 

 

➢ The authors used a standard 

split range control strategy 

(divided controller output 

range into two ranges). If the 

temperature set-point changes, 

the performance of the system 

may be poor in terms of 

settling time.  
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Soto and 

Hernandez-Riveros 

(Soto & Hernandez-

Riveros, 2019)  

➢ Presented Multidynamics algorithm for 

global optimization (MAGO) algorithm 

(Evolutionary algorithm) for tuning the 

split range controller parameters to control 

the temperature in Vapour compression 

refrigeration system (VCRS). 

➢ Enhanced the behavior of temperature 

(controlled variable) by reducing the 

settling time (approx. 2.38%), as 

compared to the PID controller, thereby 

improving the energy performance of the 

system. 

 

 

 

➢ To improve the system 

performance, a variable range of 

split range control scheme for 

bifurcating the controller output 

range can be a different area of 

research. 

 

 

 

 

 

 

 

 

 

➢ Nature-inspired controller 

techniques can be investigated 

for better performance by 

optimizing the split range 

controller parameters. 

 

 

Reyes-Lúa et al. 

(Reyes-Lúa et al., 

2018) 

➢ The performance of controllers 

(conventional split range control and 

valve position control) is tested for 

disturbance rejection in cooling water 

temperature of +2◦C at t=200 sec. and 

+4◦C at t=2000 sec.  

➢ The temperature gets earlier settled (by 

19.11% approx.) in the case of split range 

control, as compared to valve position 

control. 

Mahitthimahawong 

et al. 

(Mahitthimahawong 

et al., 2016)  

➢ Proposed the application of split range 

control for heat exchanger networks. 

➢ The performance of split range control 

was found better as compared to 

conventional PI controller based on 

stability analysis and utility cost. 

➢ The responses of outlet cold and hot 

temperature of streams with PI controller 

are settled late (by 1.59% and 2.69% 

approx., respectively) with more 

oscillations, as compared to split range 

control. 



 

Chapter 1                                                                                                                              Introduction 

 

Page | 20  

 

Arora and Gupta 

(Arora & Gupta, 

2013)  

➢ Used split range controller and the 

conventional PID controller, to control the 

temperature of the reactor. 

➢ Compared these two controller 

performances and found better results in 

the case of split range controller, reducing 

approximately 39.39% in settling time, 

and performance error criteria (ITAE, 

IAE, ISE, ITSE).  

 

 

 

 

 

 

 

 

 

➢ Authors used the offline tuning 

approaches for optimizing the 

parameters of the conventional 

controller. So, for the better 

performance, the controller gain 

parameters can be updated 

continuously online. 

 

 

 

 

 

 

 

 

Balaton et al. 

(Balaton et al., 

2013)  

➢ Performed split range controller for 

handling the three temperature ranges in 

the case of a monofluid thermoblock, 

especially the medium temperature range 

with low energy consumption.  

➢ The parameters of the controller were 

determined by a genetic algorithm.  

➢ The simulation results using the split 

range control strategy showed that 

temperature reached the desired set-point 

with a small overshoot and low settling 

time (approx. 4.18%), and no oscillation, 

as compared to the PI controller. 

Zhang et al.  

(X. J. Zhang et al., 

2012) 

➢ Developed a new temperature and 

humidity independent control device and 

tested split range controller performance 

of the device in a constant temperature 

and humidity air conditioning system 

working in a storeroom in a museum.  

➢ Both the temperature and the humidity 

were controlled in the required ranges. As 

a result, the temperature varied in the 

range of 21.9◦C and 22.1◦C, and humidity 

varied between 59.3% and 61.1%. 

➢ The performance of energy of the device 
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was also tested using simulation tests on 

the TRNSYS platform, and compared 

with the conventional air conditioning 

system. The results demonstrated that the 

developed control system obtained 

energy savings of 30-50%. 

 

 

 

 

➢ The nature-inspired optimization 

techniques using an online 

tuning approach for optimizing 

the controller parameters can be 

further area of research. 

Králová and Doležel 

(Králová & Doležel, 

2009) 

➢ Used two PID controllers and a split 

range PID controller to control the 

temperature of the thermostatic bath. The 

controller gain parameters are determined 

using the trial-error method. 

➢ Compared the results of both in terms of 

settling time and cost. It was found 

comparable performance in terms of 

settling time and a reduction of 47.31% in 

total cost (in the case of split range PID 

controller).  

 

1.3   Research gaps 

Based on the literature mentioned above, the scope for future investigations have been 

identified and listed as below: 

➢ The authors have used the standard split range control strategy for dividing the 

controller output range into two ranges that affect the system performance. Therefore, 

for better performance, a variable range of split range control scheme for bifurcating 

the controller output range can be a further area of research. 

 

➢ Nature-inspired controller techniques can be investigated to optimize the controller 

gain parameters of split range control which may provide better performance.  

 

➢ Many authors used the offline tuning approaches for optimizing the parameters of the 

conventional controller. Hence, an online tuning approach for optimizing the controller 



 

Chapter 1                                                                                                                              Introduction 

 

Page | 22  

 

parameters can be presented. To further improve the performance of the system, the 

controller parameters can be tuned online using nature-inspired optimization 

techniques that can be a further area of research. 

➢ Validation of the results in a real environment can be the area of future research.  

1.4   Objectives 

The research gaps established above provide the motivation for the work undertaken here. The 

objectives of the work are listed as follows: 

1. Investigation of MISO system for temperature control. 

2. Implementation and Comparison of different nature inspired controller techniques 

for temperature control in MISO system. 

3. Validation of the above investigations in real time environment. 

1.5   Dissertation outline 

The studies conducted and the results obtained are presented as chapters of this dissertation, the 

outline of which is provided as follows: 

Table 1.4   Dissertation outline based on chapters. 

S. No. Description Remarks 

Chapter 1 Introduction This chapter covers a background of Process Control, details about 

the process variables, control schemes, and tuning approaches 

being explored are discussed. To attain improved system 

performance, various studies on the process, controllers, tuning 

methods, and nature-inspired optimization techniques have been 

reported in the past. The survey of the literature is structured in 

chronological order (year-wise). The chapter also reports a list of 

observed research gaps which lay the foundation for the objectives 

of the dissertation and provides details about the outline of the 

dissertation. 
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Chapter 2 Modelling and 

Control 

Strategies 

This chapter reports system description and modelling in detail. It 

presents the PID controller in a conventional scheme, a standard 

split range scheme, and a variable range split range scheme. This 

chapter also includes the description of the variable range of split 

range-based PID controller for the temperature control of the 

MISO (multiple input single output) water tank system (blending 

process) in detail. 

Chapter 3 Controller: 

Tuning and 

Performance 

Evaluation 

This chapter presents the use of nature-inspired algorithms for 

tuning the PID controller used in the variable range split range 

control scheme for temperature control of a mixing process. A 

comparison of the performances of the controllers tuned using 

these algorithms and the conventional Z-N method is also 

presented. Further, an improved nature-inspired algorithm is 

proposed to enhance the performance of the controller. 

Chapter 4 Performance 

Evaluation of 

Online Tuned 

Variable 

Range SR-PID 

Controller 

This chapter presents an online tuning approach using the original 

and improved versions of the MFO algorithms for optimizing the 

parameters of variable range split range PID controller to control 

the temperature of the mixing process. The performances of the 

controllers are investigated for the various temperature setpoints in 

terms of settling time and compared with performances obtained 

using the offline tuning approach with the MFO algorithm. 

Further, the performance of the online tuned controller using the 

proposed algorithm (EMFO) is investigated with respect to the 

effect of system dynamics and the effect of process disturbance. 

Chapter 5 Validation This chapter investigates the performances of the online tuned 

controllers in the simulated real environment. The effect of using 

the EMFO algorithm for online tuning of the controller in the 

simulated real environment is studied. An electrical analogous 

model of the practical environment is simulated for investigation 

by considering several effects (imperfect insulation, density, 

viscosity, and compressibility) found in real-time conditions. 

Further, the system is also investigated with the effect of system 

dynamics, and process disturbance. Moreover, a comparison of the 

performances of variable range SR-PID controller tuned online 
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using EMFO algorithm in case of the ideal environment and the 

practical environment is also studied. 

Chapter 6 Conclusion 

and Future 

Scope 

This chapter summarizes the research outcomes and the significant 

contributions of this dissertation. It also provides the future scope 

for improvement of the current research work. 
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                                                                                                 Chapter 2 

 

Modelling and Control Strategies 

 

This chapter reports system description and modelling in detail. It 

presents the PID controller in a conventional scheme, a standard split 

range scheme and a variable range of split range scheme. This chapter 

also includes the description of variable range of split range-based PID 

controller for the temperature control of the MISO (multiple input single 

output) water tank system (blending process) in detail.  

 

In Chapter 1, the brief introduction of process control, details about its variables, schemes, tuning 

approaches, and optimization techniques were discussed. This chapter describes the system, its 

modelling, and control methods in depth. It also investigates the PID controller's performance in 

conventional scheme, a standard split range scheme and the variable range of split range scheme, 

to control the temperature of the mixing process. 

2.1   System description and modelling 

The present work considered a mixing process as most industrial processes consist of the mixing 

process in process control industries. There are two inputs, namely, cold water (flow rate 𝑄1, 

temperature 𝑇1) and hot water (flow rate 𝑄2, temperature 𝑇2). Both the constituents are mixed 

thoroughly, and water is discharged from the outlet (flow rate 𝑄, temperature 𝑇). The schematic 

diagram of the mixing process of two distinct flows in the water tank system is depicted in Fig. 

2.1. 

                                       

    Fig. 2.1   Mixing process of two different water flows in water tank system. 
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Mathematical modelling of the process is done using the mass balance equation and the energy 

balance equation (Nagy, 2007). The assumptions for the development of the model are taken as 

follows:  

❖ The volume of water in the tank is constant 

❖ Input flow rate is equal to output flow rate, i.e., 𝑄 = 𝑄1+𝑄2 

❖ The density and heat capacity of water are constant 

❖ Perfect mixing 

❖ Perfect insulation 

On the basis of mass balance equation and energy balance equation, the differential equation for 

the development of the model can be written as follows: 

                                                          𝑉
𝑑(𝑇)

𝑑𝑡
= 𝑄1𝑇1 +  𝑄2𝑇2 −  𝑄𝑇                                           (2.1)    

The general solution of Eq. 2.1 is               

                                                        𝑇 = 𝑇∞ ∗ (1 − 𝑒− 
𝑡

𝜏) + 𝑇0 ∗ 𝑒− 
𝑡

𝜏                                        (2.2) 

where  𝜏 is the time constant of the water tank, 𝑇0 is the temperature of water at the starting of 

measurement and 𝑇∞ is the temperature after the measurement of transient characteristics, and 

can be calculated as follows: 

                                                                𝜏 =
𝑉

𝑄1+𝑄2
                                                                    (2.3) 

                                                                𝑇0 =  
𝑄1𝑇1 + 𝑄2𝑇2

𝑄1+𝑄2
,          when 𝑡 = 0,                           (2.4) 

                                                                𝑇∞ =
𝑄1𝑇1 + 𝑄2𝑇2

𝑄1+𝑄2
 ,          when 𝑡 > 0,                           (2.5) 

 

In this work, the temperature of water in the tank is controlled by manipulating the flow rates of 

the cold and hot water flowing into the tank. Hence the temperature of water in the tank (𝑇) is the 

controlled variable and the flow rates of the cold and hot water (𝑄1 and 𝑄2, respectively) are the 

manipulated variables. The temperature of the inflowing cold and hot water is taken as 20°C and 

35°C, respectively. The volume of the water in the tank is maintained at 30 litres. Considering 
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pipes of 0.5 inches diameter for inflowing water, the range of flow rates resulting into a laminar 

(steady) flow through the pipes was determined by inspection in the laboratory. The minimum 

and the maximum flow rates thus obtained were 0.0115 litre/sec. and 0.1 litre/sec., respectively. 

From this range of flow rates obtained, flow rates corresponding to 30% (0.015 litre/sec.) and 

75% (0.075 litre/sec.) of the stem position of the valve were taken as the lower and upper 

saturation limits of the working range of inflows in this work. The minimum and maximum 

temperature that can be obtained with the working range of flows is 22.5°C and 32.5°C, 

respectively. Hence, the working range of the temperature in this work is 22.5°C to 32.5°C. 

 

In most of the practical cases, the performance of the closed-loop control system is specified in 

terms of transient response as it often exhibits damped oscillations before reaching the steady 

state. To study this transient performance, in this work, the performance of the controller is 

tested for the different temperature setpoints in terms of steady-state error (𝐸𝑠𝑠) and settling time 

(𝑇𝑠). Some of the factors that affect the performance of the closed-loop system (Seborg et al., 

2008) are described below: 

 

System dynamics 

System dynamics is an approach to understand the nonlinear behaviour of the system over time. 

In the closed-loop system, nonlinearities can exist in the sensor, controller, process, and valve. 

However, nonlinearity in the valve is most important due to manipulation in manipulated 

variable. Hence, keeping in view the importance of changing the manipulated variable, it was 

decided to study the system dynamics through this factor (nonlinearity in the valve). The 

nonlinearity in the valve is generally considered as dead time. Thus, to study the effect of dead 

time, initially, the performance of the system is checked using the controller with the valve with 

no dead time associated. Further, it is investigated by considering the dead time of 0.25 and 0.5 

seconds. As higher dead time leads to the reduction of ultimate gain of the system and makes it 

more prone to even low-frequency disturbances, dead time is taken in the lower half of the range, 

i.e., 0.25–0.5 seconds.  
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Disturbance rejection 

In actual operation of the system along with closed-loop control, disturbances exist naturally as 

effects of the environment. So, the modelling and simulation of the effects of disturbances are 

necessary during design because the goal of the control system is to drive the physical system to 

follow reference commands in the presence of disturbances. In this work, a disturbance is 

introduced only in the forward path in the process, not in the feedback path as no sensors are 

considered, and the controller performance is investigated with the effect of the process disturbance 

to maintain the desired value by changing the manipulated variables (considered as flow rates). The 

disturbances in the process can exist as the environmental effect, random noises present, 

practical error (due to the machinist's fault, effect of loading), abnormal behaviour of the actuator 

(manipulation of the flow rate), etc. Since the majority of process disturbances are typically 

represented by impulse function, hence, disturbance as impulse function is introduced in the 

process to examine the controller's disturbance rejection capability (Luo & Lee, 1999). 

Therefore, in this work, the impulse function is used to examine the effect of disturbance on the 

system.  

 

In this work, these above factors are used to investigate the closed-loop system performance. The 

performance of the controller is also tested in terms of utility consumption. 

 

Utility consumption 

The utility can be understood easily in terms of economics as it directly impacts the demand and 

consequently, cost. In this work, cold water and hot water are considered as utilities. To study 

the consumption of utility (Fonseca et al., 2013), the controller performance is checked for the 

various temperature setpoints and amount of the utilities (cold and hot water) are noted. 

 

2.2   Control strategies 

In this work, PID controller is used in different schemes to control the temperature of the mixing 

process, as described below. 
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2.2.1   PID controller in the conventional scheme 

The conventional PID controller is used for both SISO and MISO systems. In SISO system, a 

single PID controller is used (Khare & Singh, 2010; Mahmood et al., 2018), while in case of 

MISO system, multiple PID controllers (one for each manipulated variable) are used for 

controlling the controlled variable of the process (Králová & Doležel, 2009; Reyes-Lúa & 

Skogestad, 2019). The use of PID controller for each manipulated variable requires the setpoint 

for each manipulated variable to be known beforehand. In this work, since various combinations 

of flow rates are possible for a temperature, the setpoints for the manipulated variables will also 

vary accordingly for a given rise/fall in temperature. This makes the task of finding setpoints for 

each manipulated variable very difficult. Therefore, only one PID controller was used for 

controlling the temperature of the mixing process. In this strategy, only one manipulated variable 

is used to control the controlled variable while the other one is constant at its steady-state value. 

The schematic diagram of controlling the temperature of the mixing process using a PID 

controller is shown in Fig. 2.2. 
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                    (b) 

Fig. 2.2   Schematic diagram of temperature control using the conventional PID controller (a) for increasing 

temperature setpoint, (b) for decreasing temperature setpoint. 

 

The use of only one PID controller allows the system to manipulate the flow rate of only one 

inflow instead of both the inflows. As a result, the settling time increases and even some steady 

state error is also observed. 

In this work, the performance of the PID controller in different control schemes for temperature 

control of a mixing process is investigated. A desired increase/decrease of 10% and 30% of the 
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combinations of flow rates for a particular temperature. Therefore, PID controller is tuned for 

one combination of flow rates for a particular temperature. Later on, the performance of the PID 

controller tuned at one combination of flow rates is investigated for other combinations of flow 

rates at the same temperature. In the current work, a combination of steady-state flow rates (𝑄10 

𝑄20) obtained using Eq. 2.4 are (0.075 0.015), (0.04 0.02), (0.045 0.045), (0.02 0.03), (0.015 

0.075) for temperature setpoints 22.5°C, 25°C, 27.5°C, 29°C, 32.5°C, respectively.  

In this work, the tuning is done by the classical Ziegler-Nichols (Z-N) tuning method, as 

discussed in section 1.1.3.1. The controller gain parameters were tuned for all the cases 

(mentioned in Table 2.1) within the working range of temperature, and the gain parameters for 

all the cases were obtained, as shown in Table 2.1. 

Table 2.1   Controller gains of PID controller tuned with Z-N method for all the cases under consideration. 

Cases Setpoints (°C) Error 
Controller gains 

Kp Ki Kd 

1 22.5 +1 -46.65 -0.09 -5.75 

2 22.5 +3 -48.18 -0.08 -6.63 

3 25 +1 -33.58 -0.002 -5.78 

4 25 +3 -36.87 -0.008 -8.51 

5 25 -1 32.75 0.029 3.44 

6 25 -2 50.34 0.044 5.09 

7 27.5 +1 -28.39 -0.051 -6.28 

8 27.5 +3 -34.94 -0.025 -3.12 

9 27.5 -1 28.19 0.031 5.26 

10 27.5 -3 34.45 0.069 3.86 

11 29 +1 -24.26 -0.009 -7.18 

12 29 +3 -46.75 -0.017 -6.18 

13 29 -1 29.49 0.009 5.73 

14 29 -3 28.63 0.018 2.74 

15 32.5 -1 28.88 0.076 4.97 

16 32.5 -3 30.57 0.064 6.77 

For the increasing temperature setpoints, corresponding to each set of parameters (𝐾𝑝, 𝐾𝑖 , and 

𝐾𝑑) obtained, the performance of the controller for all the cases within the entire range was 

checked. The best set of parameters was selected on the basis of the algebraic sum to be 

minimum, as shown in bold in Table 2.2. The same procedure was adopted for the calculation of 

optimal gains for the decreasing temperature setpoints, as shown in bold in Table 2.3.  
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Table 2.2   Performance of PID controller corresponding to each set of parameters (for increasing setpoints).  

Setpoints 

(°C) 
Error Case 1 Case 2 Case 3 Case 4 Case 7 Case 8 Case 11 Case 12 

22.5 +3 789 617 756 767 842 673 785 1168 

22.5 +1 211 388 211 322 257 242 357 283 

25 +3 1161 1306 987 737 1757 1606 1018 2333 

25 +1 346 420 279 344 393 357 363 421 

27.5 +3 2142 3582 1673 2124 3353 1229 2240 3845 

27.5 +1 567 687 439 568 191 576 1032 832 

29 +3 7075 6014 5285 7470 9060 7917 7004 3255 

29 +1 1209 1394 784 798 999 880 294 1480 

    Total Sum 13500 14408 10414 13130 16852 13480 13093 13617 

 

Table 2.3   Performance of PID controller corresponding to each set of parameters (for decreasing setpoints). 

Setpoints 

(°C) 
Error Case 5 Case 6 Case 9 Case 10 Case 13 Case 14 Case 15 Case 16 

25 -1 922 1267 2063 1402 1449 1297 1571 1266 

25 -2 6471 5989 13406 7734 8909 12911 8760 9243 

27.5 -1 554 941 125 585 407 791 247 526 

27.5 -3 2271 3949 1747 774 3527 3609 3832 1098 

29 -1 666 1168 1012 492 304 989 361 382 

29 -3 1990 2619 2391 2215 1469 923 1334 1823 

32.5 -1 298 349 429 322 223 263 234 287 

32.5 -3 744 781 724 722 708 963 801 521 

    Total Sum 13916 17063 21897 14246 16996 21746 17140 15146 

 

The set of the gain parameters for two cases (Case 3 and Case 5) was selected as discussed 

above, and the performance for all the individual setpoints on the entire range was evaluated. 

The best set of parameters was chosen (Case 3) on the basis of the best settling time obtained 

during various simulations, as shown in Table 2.4. The values were observed as 𝐾𝑝 (proportional 

gain) = -33.58, 𝐾𝑖 (integral gain) = -0.002, and 𝐾𝑑 (derivative gain) = -5.78. These gain values 
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were then used to obtain the simulation results for increasing temperature setpoints (with the 

same signs) and decreasing temperature setpoints (with opposite signs). 

Table 2.4   Performance of PID controller for the various temperature setpoints using the 

best set of parameters (Case 3 and Case 5). 

Cases Setpoints (°C) Error Case 3 Case 5 

1 22.5 +3 756 774 

2 22.5 +1 211 296 

3 25 +3 987 1044 

4 25 +1 279 317 

5 25 -1 1149 922 

6 25 -2 6641 6471 

7 27.5 +3 1673 1945 

8 27.5 +1 439 573 

9 27.5 -1 442 554 

10 27.5 -3 1678 2271 

11 29 +3 5285 7484 

12 29 +1 784 805 

13 29 -1 349 666 

14 29 -3 1509 1990 

15 32.5 -1 205 298 

16 32.5 -3 752 744 

   Total Sum 23139 27154 

 

However, since the scheme in which PID controller was used, has an inherent limitation as 

discussed earlier. The results have a scope for further improvement. This motivated to 

investigate the performance of the split-range control scheme for temperature control of the 

mixing process.  

2.2.2   PID controller in split range scheme 

In this work, first, the standard split range control scheme is used in which the controller output 

range is divided into two ranges (0 to 50% and 50 to 100%) (Balaton et al., 2013). However, 

dividing the complete range into two equal halves does not lead to desirable results always as 

LSS is reached well before the lower limit of the first half range. Hence, a variable split range 

control scheme is considered in which the range of controller output is bifurcated, depending on 

the steady-state input flow rates (𝑄10 and 𝑄20), lower saturation state (LSS), and higher 

saturation state (HSS) (Vishnoi et al., 2021).  
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The split range configuration for controller output (𝐶0) can be defined when the temperature 

increases/decreases from its setpoint. The steady-state values of 𝑄1 and 𝑄2 and temperature 

setpoint will determine how much portions of the controller output will be used for the cold 

water valve 𝑉1 and hot water valve 𝑉2 (Vishnoi et al., 2021a). Schematic diagram of controlling 

the temperature of the mixing process by manipulating the flow rates 𝑄1 and 𝑄2 is shown in Fig. 

2.3. If the temperature increases or decreases from its setpoint, the split range configuration of 

the PID controller output in Fig. 2.3 can be specified as shown in Fig. 2.4. 

 

       Fig. 2.3   Schematic diagram of temperature control using the variable range of split range PID controller. 
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(b) 

Fig. 2.4   Split range configuration of the controller output: (a) for increasing temperature setpoint, (b) for 

decreasing temperature setpoint. 

The split range based PID controller was used to control the temperature of the mixing process 

by manipulating cold and hot water flow rates (𝑄1 and 𝑄2, respectively) with the help of an error 

signal. From Fig. 2.4, it can be seen that when the algebraic sum of controller output and initial 

steady-state flow rate of 𝑄1 or 𝑄2 is more than the lower steady-state value [(𝐶0 +

(𝑄10 𝑜𝑟 𝑄20)) ≥ 𝐿𝑆𝑆], the value of 𝑄1 or 𝑄2 is calculated as [(𝑄10 𝑜𝑟 𝑄20) + 𝐶0] keeping 𝑄2 or 

𝑄1 constant, respectively. However, if the algebraic sum is less than the lower steady-state value 

[(𝐶0 + (𝑄10 𝑜𝑟 𝑄20)) < 𝐿𝑆𝑆], the controller action is bifurcated as follows: 𝑄1 or 𝑄2 approaches 

lower steady-state value, and the remaining part of the controller action is used for the operation 

of 𝑄2 or 𝑄1, respectively, in the reverse mode (not exceeding the value of higher steady-state, 

HSS). 

The action of the two valves taken as cold-water valve 𝑉1 and hot water valve 𝑉2 corresponding 

to 𝑄1 and 𝑄2 input streams, respectively, with respect to deviation in flow (d) is shown in Fig. 

No 

 Lower saturated value 

Higher saturated value 

+ 

+ 

No 

− 

+ 
  

  

  

  

LSS 

Is value 

≥ LSS? 

HSS 

Merge 

Is value 

≤ HSS? 

𝐶0 

Merge 

𝑄2 

𝑄1 

+ 

+ 

+ − 

Yes 

Yes 

Steady state 
value of 𝑄1 

Steady state 
value of 𝑄2 



Chapter 2                                                                                               Modelling and Control Strategies 

Page | 36  
 

2.5, which shows the behaviour of the split range strategy. In the figure, the valve stem positions 

are considered as a minimum at 30% (fully close) and maximum at 75% (fully open), discussed 

in section 2.1.   

 
Fig. 2.5   Plot of action of two valves 𝑉1 and 𝑉2. 
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Table 2.5 (b)   Action of valves 𝑉1 and 𝑉2, when 𝑑 ≥ 0 and 𝑄20 ≠ 𝐿𝑆𝑆.                               

 

As discussed in Section 2.2.1, the same procedure was adopted for the calculation of the best set 

of the gain parameters in case of PID controller in a standard split range scheme (Tables 2.6–2.9) 

as well as the variable range of split range scheme (Tables 2.10–2.13) for the same above said 

setpoints.  

Table 2.6   Controller gains of the standard SR-PID controller tuned with the Z-N method for all the cases under 

consideration. 

Cases Setpoints (°C) Error 
Controller gains 

Kp Ki Kd 

1 22.5 +1 -49.64 -1.25 -5.20 

2 22.5 +3 -51.26 -1.80 -5.09 

3 25 +1 -36.17 -0.93 -2.89 

4 25 +3 -39.23 -1.25 -4.98 

5 25 -1 36.42 0.83 3.80 

6 25 -2 55.97 1.17 5.62 

7 27.5 +1 -36.57 -0.53 -6.24 

8 27.5 +3 -38.85 -1.07 -3.87 

9 27.5 -1 31.35 1.79 5.23 

10 27.5 -3 38.31 1.75 4.83 

11 29 +1 -26.98 -1.16 -7.14 

12 29 +3 -51.98 -0.35 -6.14 

13 29 -1 32.79 1.07 6.14 

14 29 -3 31.84 0.98 3.01 

15 32.5 -1 32.11 0.91 5.46 

16 32.5 -3 33.99 1.16 4.37 
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Table 2.7   Performance of the standard SR-PID controller corresponding to each set of parameters (for increasing 

setpoints). 

Setpoints 

(°C) 
Error Case 1 Case 2 Case 3 Case 4 Case 7 Case 8 Case 11 Case 12 

22.5 +3 552 460 548 537 589 474 552 817 

22.5 +1 148 250 155 229 180 171 268 194 

25 +3 812 712 734 523 1229 1131 901 1598 

25 +1 242 254 213 244 275 252 290 289 

27.5 +3 1498 1567 1365 1507 2345 866 2471 2634 

27.5 +1 397 722 340 402 134 406 474 570 

29 +3 4948 4898 4395 5298 6336 5576 4148 2230 

29 +1 846 1115 573 566 699 620 203 1014 

    Total Sum 9443 9978 8323 9306 11787 9496 9307 9346 

 

Table 2.8   Performance of the standard SR-PID controller corresponding to each set of parameters (for decreasing 

setpoints). 

Setpoints 

(°C) 
Error Case 5 Case 6 Case 9 Case 10 Case 13 Case 14 Case 15 

Case 

16 

25 -1 654 899 1495 1039 1043 940 1084 938 

25 -2 5301 4128 9715 5729 6410 9157 6042 6847 

27.5 -1 393 668 91 434 293 561 171 390 

27.5 -3 1611 2801 1266 574 2538 2560 2643 814 

29 -1 473 829 734 365 219 702 249 283 

29 -3 1412 1858 1733 1641 1057 655 920 1351 

32.5 -1 212 248 311 239 161 187 162 213 

32.5 -3 528 554 525 535 510 683 553 386 

    Total Sum 10584 11985 15870 10556 12231 15445 11824 11222 
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Table 2.9   Performance of the standard SR-PID controller for the various temperature 

setpoints using the best set of parameters (Case 3 and Case 10). 

Cases Setpoints (°C) Error Case 3 Case 10 

1 22.5 +3 548 557 

2 22.5 +1 155 270 

3 25 +3 734 910 

4 25 +1 213 293 

5 25 -1 862 1039 

6 25 -2 5482 5729 

7 27.5 +3 1365 2492 

8 27.5 +1 340 478 

9 27.5 -1 343 434 

10 27.5 -3 1372 574 

11 29 +3 4395 4189 

12 29 +1 573 505 

13 29 -1 267 365 

14 29 -3 1126 1641 

15 32.5 -1 151 239 

16 32.5 -3 545 535 

Total Sum 18471 20250 

 

Table 2.10   Controller gains of the variable range of SR-PID controller tuned with Z-N method for all the cases 

under consideration. 

Cases Setpoints (°C) Error 
Controller gains 

Kp Ki Kd 

1 22.5 +1 -55.2 -1.4 -4.7 

2 22.5 +3 -57 -0.9 -4.6 

3 25 +1 -40.8 -1 -3.7 

4 25 +3 -43.62 -1.4 -4.5 

5 25 -1 40.5 0.8 4.2 

6 25 -2 62.23 0.9 6.4 

7 27.5 +1 -35.1 -0.6 -6.2 

8 27.5 +3 -43.2 -1.2 -4.8 

9 27.5 -1 34.86 2 5.2 

10 27.5 -3 42.6 1.6 4.8 

11 29 +1 -30 -1.3 -7.1 

12 29 +3 -57.8 -0.4 -6.1 

13 29 -1 30.9 1.2 6.1 

14 29 -3 35.4 0.9 3.3 

15 32.5 -1 35.7 0.9 6 

16 32.5 -3 37.8 1.3 4.8 
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Table 2.11   Performance of the variable range of SR-PID controller corresponding to each set of parameters (for 

increasing setpoints). 

Setpoints 

(°C) 
Error Case 1 Case 2 Case 3 Case 4 Case 7 Case 8 Case 11 

Case 

12 

22.5 +3 376 322 369 392 412 334 381 560 

22.5 +1 104 175 116 163 126 121 185 133 

25 +3 568 498 565 371 860 797 622 1095 

25 +1 171 178 166 172 193 178 200 198 

27.5 +3 1124 1166 1100 1134 1850 610 1912 2010 

27.5 +1 282 505 265 282 94 286 327 391 

29 +3 3705 3705 3563 3793 4431 3927 2861 1528 

29 +1 396 780 400 742 489 437 140 695 

    Total Sum 6726 7329 6544 7049 8455 6690 6628 6610 

 

Table 2.12   Performance of the variable range of SR-PID controller corresponding to each set of parameters (for 

decreasing setpoints). 

Setpoints 

(°C) 
Error Case 5 Case 6 Case 9 Case 10 Case 13 Case 14 Case 15 Case 16 

25 -1 464 638 1084 1042 751 737 748 695 

25 -2 4469 3237 7765 7524 5331 4276 4305 5072 

27.5 -1 279 474 52 416 211 308 118 289 

27.5 -3 1143 1987 918 203 1826 1816 1823 603 

29 -1 336 588 532 520 158 188 172 210 

29 -3 1002 1318 1256 1216 761 465 635 1001 

32.5 -1 151 176 226 139 116 170 112 158 

32.5 -3 375 393 381 506 367 380 382 286 

    Total Sum 8219 8811 12214 11566 9521 8340 8295 8314 
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Table 2.13   Performance of the variable range of SR-PID controller for the various 

temperature setpoints using the best set of parameters (Case 3 and Case 5). 

Cases Setpoints (°C) Error Case 3 Case 5 

1 22.5 +3 369 384 

2 22.5 +1 116 165 

3 25 +3 565 387 

4 25 +1 166 169 

5 25 -1 628 464 

6 25 -2 4496 4769 

7 27.5 +3 1100 1132 

8 27.5 +1 265 279 

9 27.5 -1 267 279 

10 27.5 -3 1107 1143 

11 29 +3 3563 3700 

12 29 +1 400 296 

13 29 -1 196 336 

14 29 -3 957 1002 

15 32.5 -1 101 151 

16 32.5 -3 364 375 

   Total Sum 14660 15031 

The values were observed as 𝐾𝑝 = -36.17, 𝐾𝑖 = -0.93, and 𝐾𝑑 = -2.89 (for the case of PID 

controller in standard split range scheme), and 𝐾𝑝 = -40.8, 𝐾𝑖  = -1, and 𝐾𝑑 = -3.7 (for the case of 

PID controller in a variable range of split range scheme). These respective gain values were then 

used to obtain the simulation results for increasing temperature setpoints (with the same signs) 

and decreasing temperature setpoints (with opposite signs). 

2.3   Results and discussion 

In this chapter, the conventional PID controller and SR-PID controller (in standard and variable 

ranges) were used for controlling the temperature of the mixing process. The control strategy 

was simulated in MATLAB/Simulink environment. The performance of the controller was tested 

for different set points within the working range of temperature (22.5°C to 32.5°C). It was 

discussed in section 2.2.1 that the PID controller in all the three schemes was tuned for the 

following combination of flow rates (𝑄10 𝑄20): (0.075 0.015), (0.04 0.02), (0.045 0.045), (0.02 

0.03), (0.015 0.075) for temperature setpoints 22.5°C, 25°C, 27.5°C, 29°C, 32.5°C, respectively. 

The combination of flow rates for the extreme ends of the working range, i.e. 22.5°C and 32.5°C 
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are unique. However, for all other temperatures in the range, there are many possible 

combinations of the flow rates. Since it is not possible to tune the PID controller for each of the 

possible combination of flow rates for a particular temperature, it is important to investigate the 

performance of a controller tuned for one combination of the flow rates when this combination 

changes for the same temperature.  

Table 2.14 lists some possible combinations of the flow rates (combination I, II and III) for same 

temperature setpoints. The controllers were tuned for combination II. It is clear from the table 

that the flow rates in combination I are lower than the flow rates for which the controller has 

been tuned. Further, the flow rates in combination III are higher than the flow rates for which the 

controllers have been tuned. However, for a given temperature setpoints, the different 

combinations of flow rates were possible within the entire range (0.015 0.075), of which some 

combinations of (𝑄10 𝑄20) were tried as shown in Table 2.14.  

Table 2.14    Combinations of steady-state flow rates. 

Setpoints (°C) 
Combination I 

(𝑸𝟏𝟎 𝑸𝟐𝟎) 

Combination II 

(𝑸𝟏𝟎 𝑸𝟐𝟎) 

Combination III 

(𝑸𝟏𝟎 𝑸𝟐𝟎) 

25 (0.035 0.0175) (0.04 0.02) (0.06 0.03) 

27.5 (0.03 0.03) (0.045 0.045) (0.06 0.06) 

29 (0.018 0.027) (0.02 0.03) (0.04 0.06) 

 

The performances of the controllers were investigated with the combinations of (𝑄10 𝑄20) for the 

setpoints shown in Table 2.14 and compared in terms of settling time, as shown in Table 2.15. In 

Table 2.15, the first, second and third rows (in all the cases) used combination I, combination II 

and combination III, respectively. 

It can be inferred from Table 2.15 that irrespective of the combination of flow rates for a given 

temperature, a variable range of SR-PID controller provided better results in all the conditions 

(temperature rises/ falls of 10% or 30% within the entire range), as compared to the standard SR-

PID and the conventional PID controllers. 
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Table 2.15    Performances of PID controller (in all the schemes) with different combinations of flow rates. 

Cases 
Setpoints 

(°C) 
Error 

PID 

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

Improvements in Ts (%) 

𝑇𝑠  𝑇𝑠 𝑇𝑠 
SR-PID 

(standard)  

over PID 

SR-PID 

(variable) 

over PID 

1 

25 +3 1002 744 573 25.75 42.81 

25 +3 987 734 565 25.82 42.96 

25 +3 782 554 389 26.84 49.25 

2 

27.5 +3 2172 1857 1588 18.5 33.89 

27.5 +3 1673 1365 1100 18.61 34.25 

27.5 +3 1223 921 660 24.69 46.03 

3 

29 +3 5310 4413 3576 16.81 31.66 

29 +3 5285 4395 3563 16.94 32.58 

29 +3 4560 3677 2852 19.36 37.46 

4 

25 -2 6668 5502 4511 17.39 32.15 

25 -2 6641 5482 4496 17.48 32.3 

25 -2 5736 4588 3610 20.01 37.06 

5 

27.5 -3 2186 1873 1604 18.32 33.62 

27.5 -3 1678 1372 1107 18.44 34.03 

27.5 -3 1232 929 668 24.58 45.78 

6 

29 -3 1524 1138 967 25.33 36.55 

29 -3 1509 1126 957 25.39 36.69 

29 -3 1061 814 598 26.28 43.64 

7 

25 +1 284 217 169 23.59 40.49 

25 +1 279 213 166 23.66 40.55 

25 +1 256 195 151 23.84 41.02 

8 

27.5 +1 465 363 286 21.94 38.49 

27.5 +1 439 340 265 22.55 39.64 

27.5 +1 412 318 245 22.82 40.53 

9 

29 +1 796 581 405 20.41 35.12 

29 +1 784 573 400 21.52 36.45 

29 +1 591 456 315 21.84 38.41 

10 

25 -1 1162 871 634 21.04 34.44 

25 -1 1149 862 628 22.09 36.08 

25 -1 963 682 452 22.18 37.06 

11 

27.5 -1 469 367 289 21.75 38.38 

27.5 -1 442 343 267 22.39 39.59 

27.5 -1 416 320 246 23.08 40.87 

12 

29 -1 356 271 199 23.38 44.1 

29 -1 349 267 196 23.5 44.84 

29 -1 322 243 174 24.53 45.96 

It is also clear from the results that the controller tuned for one combination of flow rates at a 

temperature performs satisfactorily when the combination of the flow rates changes for the same 
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temperature. Therefore, further investigations in this work shall be made only for the 

combination of flow rates for which the controllers have been tuned. 

The performance of the controller in all the schemes using the best set of gain parameters was 

evaluated on the basis of steady-state error (𝐸𝑠𝑠) and settling time (𝑇𝑠), as shown in Tables 2.16–

2.21. The investigations consist of studying the transient performance, the effect of system 

dynamics (dead time in the valve), and the effect of disturbance in the process. The performance 

of the controller is also examined in terms of utility consumptions. 

2.3.1   Effect of dead time in the valve 

Initially, the system performance was checked with zero dead time (Table 2.16). The simulation 

results were obtained for the different temperature setpoints. Based on these simulation results, a 

comparative study was made for the performance of the controller (in all the schemes) on the 

basis of steady-state error, 𝐸𝑠𝑠 and settling time, 𝑇𝑠 (second), as shown in Table 2.16. 

Table 2.16    Comparative study of the transient response of PID controller (in all the schemes) with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 

 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 756 0.056 548 0.005 369 0.001 27.51 51.19 

2 22.5 +1 211 0.031 155 0.003 116 0 26.54 45.02 

3 25 +3 987 0.055 734 0.007 565 0.001 25.63 42.96 

4 25 +1 279 0.034 213 0.004 166 0 23.66 40.55 

5 25 -1 1149 0.061 862 0.009 628 0.003 22.09 36.08 

6 25 -2 6641 0.073 5482 0.016 4496 0.008 17.45 32.3 

7 27.5 +3 1673 0.054 1365 0.0098 1100 0.004 18.41 34.25 

8 27.5 +1 439 0.037 340 0.006 265 0.001 22.55 39.64 

9 27.5 -1 442 0.038 343 0.006 267 0.001 22.39 39.59 

10 27.5 -3 1678 0.054 1372 0.0096 1107 0.004 18.24 34.03 

11 29 +3 5285 0.071 4395 0.02 3563 0.009 16.84 32.58 

12 29 +1 784 0.042 573 0.007 400 0.002 21.52 36.45 

13 29 -1 349 0.033 267 0.004 196 0 23.5 44.84 

14 29 -3 1509 0.056 1126 0.0072 957 0.001 25.38 36.69 

15 32.5 -1 205 0.03 151 0.003 101 0 26.34 48.56 

16 32.5 -3 752 0.057 545 0.006 364 0.001 27.53 51.6 
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It is clear from the above table that the system took the longest to settle in case of the 

conventional PID control scheme as only one flow rate was manipulated in this scheme. A 

decrease in settling time was observed in case of standard split range control scheme as both the 

flow rates were manipulated. However, as the controller output was effectively split in the 

variable range split range control resulting in simultaneous manipulation of both the flow rates, 

minimum settling times were observed in this case.  

The table also shows the percentage improvement in settling time in case of the SR (standard) 

and SR (variable) over PID control scheme. It is clear that the percentage improvement is more 

in case of SR (variable) in all the cases. However, this percentage improvement decreases for a 

desired rise in temperature when we move from the lower bound of the working range towards 

the higher bound. This is because for higher temperatures, the inflow rate of the hot water is 

higher. For a further rise in temperature, the controller output is split in a manner that tends to 

increase the inflow rate of hot water even more. However, the flow rates can be varied only 

within the permitted limits. Therefore, the desired control action cannot be implemented fully in 

the higher ranges of temperature. The gap between the desired and actual control action 

implemented increases as we move upwards in the working range. As a result, the system takes 

comparatively longer to settle to the desired setpoint as we move upwards in the working range. 

This also results in decrease in the percentage improvement in the performance of the SR 

(variable) scheme over the conventional PID control scheme as we move upwards in the working 

range. However, the performance is still better than the standard SR strategy. For similar reason, 

a decrease in percentage improvement in the performance of SR (variable) over the conventional 

PID control scheme is observed for falling temperatures as we move from higher to lower 

bounds of the working range of temperatures.  

By considering the dead time of 0.25 second and 0.5 second in the valve, the performances of the 

controllers were further investigated. The comparison between the performances of the 

controllers on the basis of simulation studies are presented in Tables 2.17 and 2.18.  
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Table 2.17   Comparative study of the transient response of PID controller (in all the schemes) with a dead time of 

0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 

 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 
𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 922 0.058 657 0.007 441 0.002 28.74 52.17 

2 25 -1 1401 0.064 1034 0.011 736 0.003 26.2 47.47 

3 27.5 +3 2041 0.057 1638 0.012 1311 0.005 19.75 35.77 

4 27.5 -3 2047 0.057 1646 0.012 1321 0.004 19.59 35.47 

5 29 +1 956 0.044 687 0.009 468 0.002 28.14 51.05 

6 32.5 -3 917 0.059 654 0.009 435 0.002 28.68 52.56 

 

Table 2.18   Comparative study of the transient response of PID controller (in all the schemes) with a dead time of 

0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 

 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 
𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 1171 0.061 818 0.01 532 0.002 30.15 54.57 

2 25 -1 1780 0.068 1287 0.017 875 0.004 27.7 50.84 

3 27.5 +3 2593 0.061 2039 0.02 1586 0.005 21.37 38.84 

4 27.5 -3 2600 0.06 2049 0.019 1595 0.005 21.19 38.65 

5 29 +1 1215 0.047 856 0.012 555 0.003 29.55 54.32 

6 32.5 -3 1165 0.063 814 0.011 527 0.003 30.13 54.76 

 

On the basis of the simulation results, it can be said from Tables 2.16–2.18 that the variable 

range of SR-PID controller provided better results as compared to the standard SR-PID and the 

conventional PID controllers. With the introduction of dead time in the valve, the manipulated 

variables will take longer to actually change. Therefore, the system will give a sluggish response, 

resulting in higher settling times in all the cases, as compared to a system with no dead time. It 

can also be inferred that the settling times increase with an increase in dead time of the valve. 
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2.3.2   Effect of process disturbance 

The system under consideration was further checked for the effect of disturbance (considered in 

the forward path in the process at t=30 seconds) on the performance of the controller using 

impulse function as disturbance. The performance of the controller (in all the three schemes) was 

tested at the various temperature setpoints considered earlier, and the results are provided in 

Tables 2.19–2.21.   

Table 2.19    Comparative study of the transient response of PID controller (in all the schemes) with disturbance and 

no dead time. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 

 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 
𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 781 0.057 569 0.008 387 0.002 27.14 50.45 

2 22.5 +1 228 0.031 168 0.004 126 0.001 26.32 44.74 

3 25 +3 1013 0.056 751 0.009 579 0.002 25.86 42.84 

4 25 +1 309 0.035 239 0.007 189 0.001 22.65 38.83 

5 25 -1 1324 0.064 1031 0.011 791 0.006 20.13 33.26 

6 25 -2 7857 0.076 6742 0.017 5705 0.01 14.19 27.39 

7 27.5 +3 1742 0.057 1427 0.012 1157 0.006 18.08 33.58 

8 27.5 +1 503 0.037 401 0.007 322 0.003 20.28 35.98 

9 27.5 -1 506 0.038 403 0.007 324 0.003 20.36 35.97 

10 27.5 -3 1745 0.057 1433 0.011 1163 0.005 17.88 33.35 

11 29 +3 6577 0.074 5733 0.021 4848 0.009 12.83 26.29 

12 29 +1 891 0.045 675 0.008 501 0.003 20.04 33.77 

13 29 -1 388 0.034 302 0.004 228 0.001 22.16 41.24 

14 29 -3 1539 0.057 1147 0.009 975 0.002 25.47 36.65 

15 32.5 -1 229 0.031 171 0.004 118 0.001 25.33 48.47 

16 32.5 -3 771 0.059 560 0.009 377 0.002 27.37 51.1 

 

The results showed from Tables 2.19 that even in case of disturbance, the variable range of split 

range PID controller gave a better performance as compared to the conventional PID controller 

and a standard split range PID controller. It can be said from Tables 2.16 (results with no 

disturbance) and 2.19 (results with disturbance) that when a disturbance is introduced in the 
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process, the performance of the control system will be affected in terms of settling time, steady-

state error. 

 

Table 2.20    Comparative study of the transient response of PID controller (in all the schemes) with a dead time of 

0.25 sec. and disturbance. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 
 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 
𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 949 0.059 680 0.008 460 0.002 28.35 51.53 

2 25 -1 1578 0.066 1205 0.012 899 0.004 25.84 43.03 

3 27.5 +3 2112 0.058 1702 0.013 1369 0.006 19.41 35.18 

4 27.5 -3 2116 0.058 1709 0.012 1378 0.005 19.23 34.88 

5 29 +1 1065 0.045 791 0.009 570 0.003 25.73 46.48 

6 32.5 -3 938 0.061 671 0.01 449 0.002 28.46 52.13 

 

Table 2.21   Comparative study of the transient response of PID controller (in all the schemes) with a dead time of 

0.5 sec. and disturbance. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID 

Controller 

(in Standard 

range) 

SR-PID 

Controller 

(in Variable 

range) 

 

Improvements in Ts (%) 
 

SR-PID 

(standard) 

over PID 

SR-PID 

(variable) 

over PID 
𝑇𝑠  𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 𝑇𝑠 𝐸𝑠𝑠 

1 22.5 +3 1199 0.062 841 0.011 551 0.002 29.86 54.05 

2 25 -1 1958 0.069 1458 0.018 1039 0.005 26.54 46.94 

3 27.5 +3 2665 0.062 2103 0.021 1644 0.006 21.09 38.31 

4 27.5 -3 2670 0.063 2112 0.02 1652 0.006 20.9 38.14 

5 29 +1 1325 0.047 960 0.012 657 0.004 27.55 50.42 

6 32.5 -3 1187 0.065 831 0.013 541 0.003 29.99 54.42 

It can also be observed that in the presence of disturbance, the system will take more time to 

attain the desired state of temperature as compared to the system without disturbance. This time 

increases further with an increase in dead time of the valve (Table 2.19–2.21). 
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2.3.3   Utility consumption 

The performance of the controller was also investigated on the basis of utility consumption, i.e., 

cold utility consumption (uc) and hot utility consumption (uh). The utility consumption achieved 

using the controller in all the schemes is presented in Tables 2.22–2.27. 

Table 2.22   Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with no 

dead time. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 23.52 11.34 16.71 28.83 8.27 25.28 

2 22.5 +1 18.12 3.17 10.23 12.64 7.18 11.26 

3 25 +3 32.45 19.74 18.11 55.82 10.09 40.8 

4 25 +1 19.75 5.58 13.37 16.07 9.02 14.46 

5 25 -1 45.96 34.16 52.19 14.04 46.41 12.14 

6 25 -2 265.64 189.26 334.94 107.29 296.4 68.68 

7 27.5 +3 48.32 75.29 29.94 97.96 17.03 82.38 

8 27.5 +1 21.46 19.76 14.28 23.96 10.11 22.13 

9 27.5 -1 19.89 22.05 24.05 14.67 21.39 11.17 

10 27.5 -3 75.51 48.64 98.26 30.04 82.89 17.41 

11 29 +3 139.34 158.55 88.32 233.27 54.36 208.62 

12 29 +1 22.77 23.52 16.13 27.68 12.57 25.75 

13 29 -1 6.98 20.37 17.71 12.35 15.47 9.88 

14 29 -3 30.18 38.92 56.22 26.76 45.45 15.17 

15 32.5 -1 3.07 17.79 12.93 10.01 10.95 7.03 

16 32.5 -3 11.28 23.42 28.67 16.57 25.21 8.07 

 

It can be inferred from Tables 2.22 that in case of variable range SR-PID controller, the total 

utility consumption (cold water plus hot water) was observed to be lesser in all the cases as 

compared to the conventional PID controller and a standard SR-PID controller. It can also be 

seen from table that hot utility consumption (uh)/ cold utility consumption (uc) increases by 

rising/ falling the temperature setpoint with the same value of error. This is because of higher 

temperature which requires more heating, whereas lower temperature requires more cooling.  
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Table 2.23   Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with 

disturbance and no dead time. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 25.21 11.72 17.91 30.65 8.87 26.82 

2 22.5 +1 19.57 3.42 11.04 13.49 7.68 11.94 

3 25 +3 35.05 20.26 19.47 59.56 10.8 43.25 

4 25 +1 21.33 6.18 14.37 17.15 9.65 15.33 

5 25 -1 52.96 38.31 55.95 14.92 49.66 11.82 

6 25 -2 314.28 204.21 360.06 114.48 327.15 72.8 

7 27.5 +3 53.27 78.39 30.86 98.45 18.22 86.51 

8 27.5 +1 23.18 22.64 15.35 25.57 10.82 23.46 

9 27.5 -1 22.77 23.79 25.85 15.65 22.89 11.84 

10 27.5 -3 78.53 53.84 99.26 31.93 87.98 18.87 

11 29 +3 150.49 197.31 94.94 248.9 58.17 221.14 

12 29 +1 24.41 26.73 17.29 29.42 12.98 27.32 

13 29 -1 7.76 21.98 19.04 13.18 16.55 10.47 

14 29 -3 30.78 41.99 60.44 28.55 48.63 16.08 

15 32.5 -1 3.44 19.2 13.9 10.68 11.72 7.45 

16 32.5 -3 11.57 24.9 30.73 17.61 26.21 8.58 

 

 

Table 2.24    Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with a 

dead time of 0.25 sec. 

Cases Setpoints (°C) Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 27.42 13.83 18.28 38.23 8.73 31.76 

2 25 -1 56.04 38.07 59.08 16.63 57.13 14.19 

3 27.5 +3 58.69 91.85 35.52 119.28 20.49 98.21 

4 27.5 -3 92.12 58.90 119.64 35.71 98.84 20.63 

5 29 +1 26.69 28.68 19.65 31.39 11.97 29.37 

6 32.5 -3 13.76 27.29 38.18 18.15 31.17 8.38 
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Table 2.25    Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with a 

dead time of 0.5 sec. 

Cases Setpoints (°C) Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 36.07 17.57 24.82 46.21 10.67 37.67 

2 25 -1 71.2 40.82 76.74 18.95 73.44 16.19 

3 27.5 +3 74.91 116.69 44.97 148.38 24.66 119.05 

4 27.5 -3 117 75.18 149.04 45.26 118.69 25.37 

5 29 +1 30.53 36.45 23.29 44.46 13.28 38.74 

6 32.5 -3 17.48 35.92 46.15 24.64 37.59 10.30 

 

 

Table 2.26   Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with a 

dead time of 0.25 sec. and disturbance. 

Cases Setpoints (°C) Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 29.39 14.24 19.56 40.56 9.36 33.76 

2 25 -1 63.12 40.47 63.22 17.64 61.24 15.08 

3 27.5 +3 62.92 95.04 38.01 126.5 21.97 104.4 

4 27.5 -3 95.22 62.61 128.0 37.89 105.9 21.93 

5 29 +1 28.61 31.95 21.03 33.3 12.83 31.22 

6 32.5 -3 14.07 29.01 40.85 19.26 33.41 8.91 
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Table 2.27   Comparative study of the amount of 𝑄1 and 𝑄2 flows using PID controller (in all the schemes) with a 

dead time of 0.5 sec. and disturbance. 

Cases 
Setpoints 

(°C) 
Error 

PID  

Controller 

SR-PID Controller 

(in Standard range) 

SR-PID Controller 

(in Variable range) 

uc uh uc uh uc uh 

1 22.5 +3 38.67 17.98 26.56 49.03 11.44 40.04 

2 25 -1 72.32 43.39 82.11 20.11 78.73 17.21 

3 27.5 +3 80.3 110.9 48.12 157.4 26.44 126.6 

4 27.5 -3 111.3 79.92 159.4 48.02 127.2 26.97 

5 29 +1 32.73 39.75 24.92 47.17 14.24 41.18 

6 32.5 -3 17.81 38.18 49.38 26.14 40.3 10.95 

 

It can also be said that in case of conventional PID controller, the hot utility consumption for 

rising setpoints and the cold utility consumption for falling setpoints are found to be lower, as 

compared to the SR-PID controller in standard and variable range schemes. It is because of the 

consideration of one manipulated variable (𝑄1 or 𝑄2, respectively) in case of conventional PID 

controller to control the controlled variable, keeping other one (𝑄2 or 𝑄1, respectively) constant 

at its steady-state value. 

It can also be inferred from Tables 2.24–2.25 that hot and cold utility consumptions increase 

with an increase in dead time of the valve. These utility consumptions (uh and uc) increase further 

in case of introduction of disturbance and dead times (Tables 2.26–2.27). 

 

This chapter mainly highlighted the conventional PID controller, a standard split range PID 

controller, and the variable range of split range PID controller for temperature control of a 

mixing process. For the tuning purpose, the Z-N tuning method was applied to find the controller 

gains. The simulation results obtained were compared in terms of settling time and steady-state 

error. It was observed that the variable range of split range PID controller outperformed 

conventional PID controller as well as a standard split range PID controller in all the scenarios, 

i.e., the effect of dead time in the valve, the effect of disturbance in the process, and utility 

consumption. The steady-state error in the case of the variable range of the SR-PID controller 
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was found to be minimum (equivalent to zero) in all the scenarios (Tables 2.16–2.21). It was also 

observed that the use of a variable range of SR-PID controller with the Z-N tuning method 

produced a response that led to a significant overshoot and settling time. Furthermore, this work 

can be extended by using nature-inspired optimization techniques for enhancing the performance 

of the variable range of the SR-PID controller.  
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                                                                                                 Chapter 3 

 

 Controller: Tuning and Performance Evaluation  
 

This chapter presents the use of nature- inspired algorithms for tuning the 

PID controller used in the variable range split range control scheme for 

temperature control of a mixing process. A comparison of the 

performances of the controllers tuned using these algorithms and the 

conventional Z-N method is also presented. Further, an improved nature 

inspired algorithm is proposed to enhance the performance of the 

controller.  

 

The variable range split range controller exhibited the best performance in controlling the 

temperature of a mixing process in the last chapter. However, the said controller was tuned using 

Z-N method. As the nature-inspired optimization algorithms have been proved to be efficient 

tools for tuning PID controllers, it is proposed to further enhance the performance of the variable 

range split range controller by tuning the controller using nature-inspired optimization 

algorithms. 

The particle swarm optimization (PSO) algorithm is one of the most used swarm intelligent-

based techniques (nature-inspired techniques), which utilizes the swarming behavior of birds. 

The main advantage of the PSO algorithm is that it is easy to implement, does not require 

gradient information (a detailed mathematical description of the process), and determines the 

optimal gain parameters (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑) depending on the objective function. PSO converges 

fast because this algorithm is easily employed with few parameters to be adjusted. Various 

researchers are reported their work for optimizing the controller using the PSO algorithm 

(Safarzadeh & Noori-kalkhoran, 2021; Mien et al., 2020; Rajesh, 2019; Thamallah et al., 2019; 

Greeshma, 2019; Gao et al., 2018). 

Since most of the earlier developed optimization algorithms such as PSO, gravitational search 

algorithm (GSA), and differential evolution (DE) do not have parameters to determine specific 



 Chapter 3                                                                    Controller: Tuning and Performance Evaluation 

Page | 55  
 

iterations for the exploitation or the exploration phase as they utilize only one format for 

updating search agents’ positions, so the chances of entrapment into local optima is typically 

increased (Ho-Huu et al., 2015).  

Hence, to improve the system performance, a Whale optimization algorithm is used that shows 

the hunting behavior of humpback whales in nature. It takes lesser iterations to reach the optimal 

global solution in comparison to the previously developed algorithms. The whale optimization 

algorithm leads PSO, GSA, DE, and other optimization techniques in terms of solutions accuracy 

and stability (Fan et al., 2021). Various authors have used the WOA algorithm for optimizing the 

controller parameters (Karam & Awad, 2020; Mosaad et al., 2019; Loucif et al., 2019; Ding et 

al., 2018). 

In the WOA algorithm, convergence and speed depend on the control parameter ‘a’, which is 

used in the encircling prey mechanism. This parameter has a major effect on WOA’s 

performance (Zhong & Long, 2017). As a result, this algorithm performs with poor convergence 

speed in both the exploitation and the exploration stages (Pecora & Carroll, 2015; Saidala & 

Devarakonda, 2018). As a result, an effective improvement is required for balancing exploitation 

and exploration (Abdel-Basset et al., 2018). Moreover, the whale optimization algorithm utilizes 

the encircling process in the search space, which is less capable to jump out from local optima. 

As a result, it leads to poor performance (Nagaraj et al., 2015). This algorithm also has another 

limitation when improving the best solution after every iteration (Xu Z. et al., 2018). 

Further, to enhance the system performance, the Moth flame optimization algorithm is used that 

simulates the navigational behavior of the moths in nature. It has highly opted for optimization 

involving high exploration, exploitation, and avoidance of local optima, and also combines 

capabilities of global exploration and local search (Acharyulu et al., 2020; Mohanty, 2019; 

Dhyani et al., 2018; Ng Shin Mei et al., 2017). This makes it a very promising algorithm for 

finding applications in various fields (Acharyulu et al., 2020; Mohanty, 2019; Dhyani et al., 

2018; Mohanty et al., 2018; Ng Shin Mei et al., 2017; Allam et al., 2016; Jangir et al., 2016). 

These nature-inspired optimization techniques have been discussed in detail below: 
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3.1   Particle swarm optimization 

PSO is the population-based algorithm that was proposed by Eberhart and Kennedy in 1995 

(Kennedy & Eberhart, 1995). It simulates the social behavior of bird flocking. The PSO 

algorithm works by having a population (known as a swarm) of particles. Each particle 

represents the candidate solution to the optimization problems. The movement of the particles is 

directed by their own best position in the search space as well as the global best position of the 

population. Each particle’s performance is evaluated on the basis of a fitness function that also 

varies depending on the optimization problem. This performance shows how near the particle is 

to the global optimum. 

The two main operators in the PSO algorithm are velocity update and position update. Each 

particle is moved toward its prior best position and the global best position throughout each 

iteration. A new velocity for each particle is determined at each iteration on the basis of its 

current velocity, distance from its prior best position, and distance from the best global position. 

The updated velocity value is then utilized to compute the particle's next position in the search 

space. This procedure is then repeated a certain number of times or until a minimal error is 

obtained (Eberhart et al., 2001). Fig. 3.1 shows the bird flocking behavior and the displacement 

of the ith particles in the solution space during the k and (k+1) iterations (Eberhart et al., 2001).  

 

              

(a)                                                                                             (b) 

Fig. 3.1   PSO inspiration: (a) Bird flocking behavior, (b) Movement of the ith particles in the swarm space. (Source: 

Zeng et al., 2014) 
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The evolution of displacement of the particles is influenced by the particle's best position (𝑃𝑏𝑒𝑠𝑡), 

and the global best position (𝐺𝑏𝑒𝑠𝑡). Each particle modifies its path in order to reach the best 

fitting solution achieved thus far. This value is known as 𝑃𝑏𝑒𝑠𝑡. Each particle also adjusts its path 

towards the best prior position achieved by any member of its neighborhood. This is referred to 

as 𝐺𝑏𝑒𝑠𝑡. 

The procedure of the PSO algorithm is given step by step as follows (Eberhart et al., 2001): 

Step 1: Initialization: The position and velocity of all the particles are set at random within pre-

defined limits. 

Step 2: Velocity and position updating: The velocity and position of each particle are updated 

according to the following equations: 

                                𝑉𝑖
𝑘+1 = 𝑤. 𝑉𝑖

𝑘 + 𝑐1 . 𝑟1 (𝑃𝑏𝑒𝑠𝑡  𝑖 − 𝑥𝑖
𝑘) + 𝑐2 𝑟2 (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘)                     (3.1) 

                                                           𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                          (3.2) 

where 𝑉𝑖
𝑘 and 𝑥𝑖

𝑘 are the current velocity and the position of the ith particle at iteration k, 

respectively; 𝑉𝑖
𝑘+1 represents the new velocity of the ith particle at iteration k; w is a population 

controlling the flying dynamics;  𝑐1 and 𝑐2 are factors controlling the related weighting of 

corresponding terms; 𝑃𝑏𝑒𝑠𝑡 𝑖 is personal best of ith particle and 𝐺𝑏𝑒𝑠𝑡 is global best of the 

population, respectively; 𝑟1  and 𝑟2 specify the random numbers in the range [0, 1] ; 𝑥𝑖
𝑘+1 denotes 

the position of the ith particle at the next iteration k+1.  

The use of random variables in the PSO algorithm provides the capacity to search in a 

randomized manner. The factors 𝑐1 and 𝑐2 indicate the weighting of the random acceleration that 

accelerate each particle toward 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 positions. As a result, adjusting these constants 

alters the amount of stress in the system. Low values enable particles to wander far away from 

target locations before being pulled back, whereas high values allow rapid movement toward 

target locations (Eberhart & Shi, 2001). The weighting factors minimize the unavoidable tradeoff 

between exploration and exploitation.  

Step 3: Memory updating: Update  𝑃𝑏𝑒𝑠𝑡 𝑖 and 𝐺𝑏𝑒𝑠𝑡 when the condition is met. 

                                           𝑃𝑏𝑒𝑠𝑡 𝑖 = 𝑥𝑖
𝑘         when    f (𝑥𝑖

𝑘) > f (𝑃𝑏𝑒𝑠𝑡 𝑖 )                                   (3.3) 
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                                           𝐺𝑏𝑒𝑠𝑡   = 𝑥𝑖
𝑘         when    f (𝑥𝑖

𝑘) > f (𝐺𝑏𝑒𝑠𝑡 )                                           (3.4) 

where f (t) denotes the objective function to be maximized. 

Step 4: Termination checking: This algorithm repeats Steps 2 to 4 until the end criteria are 

satisfied. Once the algorithm is ended, it provides the best optimal solution as 𝑃𝑏𝑒𝑠𝑡 𝑖 and 𝐺𝑏𝑒𝑠𝑡. 

The velocities of particles in each dimension are restricted to a maximum velocity Vmax.  

Therefore, Vmax is a crucial parameter that defines the fineness, or resolution, with which areas 

between the current position and the targeted (best so far) position are explored. If Vmax is too 

high, particles may fly through suitable solutions, whereas particles may not explore adequately 

beyond locally favorable areas if Vmax is too low (Eberhart et al., 2001). Indeed, they may fall in 

local optima, not able to accelerate in order to achieve a better position in the search space 

(Eberhart & Shi, 2001). The flowchart for the basis PSO algorithm is shown in Fig. 3.2. 

The following parameters were considered for the PSO algorithm that is listed in Table 3.1.  

 
Table 3.1   PSO algorithm parameters. 

S. No. Parameters Values 

1 Number of search agents 20 

2 Dimension 3 

3 Maximum no. of iterations 50 

4 Lower bounds (for increasing setpoints) [-70 -2 -10] 

5 Lower bounds (for decreasing setpoints) [0 0 0] 

6 Upper bounds (for increasing setpoints) [0 0 0] 

7 Upper bounds (for decreasing setpoints) [70 2 10] 

 

The number of iterations (K) was set at 50 to achieve rapid convergence and good results (Gaing, 

2004). The initial population of 20 particles was generated randomly in search space that may 

attain the various final solutions. The result may or may not be the optimal solution if only one 

trial was performed. Therefore, to solve this problem, multiple trials were performed, and the 

best solution was identified between all trials. It involved running the PSO algorithm 10 times 

(trial number =10) and finding the optimum gains of the SR-PID controller associated with the 

minimum fitness value. The lower and upper bounds for increasing setpoints and decreasing 

setpoints were taken, as shown in Table 3.1. These values were taken on the basis of the 
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controller gain values obtained from the Ziegler-Nichols method for different set points within 

the working range. The values of lower and upper bounds were decided in a way to ensure that 

the solution space not only includes all the gain values obtained using the Z-N method but also 

provides the opportunity to the PSO algorithm to explore probable solutions beyond the range 

obtained by the Z-N method.  

 

 

                             Fig. 3.2   Flow chart of PSO algorithm. 
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3.2   Whale optimization algorithm 

The Whale Optimization Algorithm (WOA) was proposed by Mirjalili and Lewis (Mirjalili & 

Lewis, 2016). It is a metaheuristic algorithm based on the hunting behavior of humpback whales. 

According to the humpback whales' hunting strategy, once prey (such as small fishes, krills) is 

discovered, humpback whales dive deeply and create bubble nets in a spiral shape around the 

prey. This special hunting strategy used by the humpback whales is known as the bubble-net 

attacking method. The bubble-net attacking behavior of humpback whales is shown in Fig. 3.3. 

 

 

Fig. 3.3   Bubble-net attacking behavior of humpback whales. (Source: Mirjalili & Lewis, 2016) 

 

The mathematical model of the WOA algorithm can be explained in the following phases 

(Mirjalili & Lewis, 2016):  

❖ Encircling Prey  

❖ Bubble-net attacking method 

❖ Search for prey 

3.2.1   Encircling prey  

In this phase, the humpback whale identifies the position of prey and encircles them. Since 

initialization of the search agents is random in the search-space, hence, this algorithm treats the 

current best position as the position of the prey. The other agents will update their positions 

according to the following equations:  
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                                                    𝐷 = |𝐶. 𝑋∗(𝑘) − 𝑋(𝑘)|                                                          (3.5) 

                                                  𝑋(𝑘 + 1) = 𝑋∗(𝑘) − 𝐴. 𝐷                                                        (3.6) 

where, 𝑋(𝑘) represents the whale’s position vector, k denotes the current iteration, 𝑋∗(𝑘) is the 

prey position vector, and 𝐴 and 𝐶 are coefficient vectors, which can be determined as follows: 

                                                            𝐴 = 2𝑎. 𝑟 − 𝑎                                                                 (3.7)  

                                                                 𝐶 = 2. r                                                                      (3.8)  

where 𝑎 signifies a variable linearly decreased from 2 to 0 during iterations, and r represents a 

random vector in [0 1].  

3.2.2   Bubble-net attacking method (Exploitation phase)  

The humpback whales use a bubble-net method to capture the prey, as described previously. Two 

mechanisms are adopted to explain the bubble-net behavior of humpback whales for capturing 

prey. These mechanisms are mathematically represented as follows: 

Shrinking encircling mechanism  

This approach is dependent on the value of 𝑎. In order to achieve the shrinking behavior, the 

value of 𝑎 is decreased from 2 to 0 throughout iterations, and |𝐴| < 1. The shrinking encircling 

mechanism can be represented as shown in Fig. 3.4 (a). 

Spiral updating position  

This approach calculates the distance 𝐷′ between the whale’s position (X, Y) and the prey 

position (X*, Y*) as shown in Fig. 3.4 (b). Following this, a spiral equation can be formed to 

update the position of the whales as given below:  

                                              𝑋(𝑘 + 1) = 𝐷′. 𝑒𝑏𝑡. 𝑐𝑜𝑠(2𝜋𝑡) + 𝑋∗(𝑘)                                       (3.9)  

where, 𝐷′ = |𝑋∗(𝑘) − 𝑋(𝑘)| that represents the distance of the ith whale to the prey, b indicates a 

constant that specifies the logarithmic spiral’s shape, t denotes a random number in [-1 1]. 

During hunting, humpback whales utilize both of the approaches described above, swimming 

around the prey in a shrinking circle while also swimming along a spiral path at the same time. 
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(a)                                                                                               (b) 

Fig. 3.4   Bubble-net search: (a) Shrinking mechanism, and (b) Spiral updating position. (Source: Mirjalili &  

Lewis, 2016) 

 

In order to take into consideration this behavior, it is supposed that they use a probability of 

50% for the shrinking approach and the same probability for the spiral model to update their 

position, which may be described as follows (Mirjalili & Lewis, 2016): 

                                 𝑋(𝑘 + 1) = {
𝑋∗(𝑘) − 𝐴. 𝐷,                                   if 𝑝 < 0.5

𝐷′. 𝑒𝑏𝑡. 𝑐𝑜𝑠(2𝜋𝑡) + 𝑋∗(𝑘),          if 𝑝 ≥ 0.5
                         (3.10)                                        

where p is the probability number that lies in the range of 0 and 1. 

3.2.3   Search for prey (Exploration phase)  

In this process, it is assumed that the humpback whales search for prey on a random basis, 

depending on their position each other. The whales’ position is updated based on a randomly 

chosen whale rather than the best whale computed so far. The exploration phase can be described 

mathematically as follows (Mirjalili & Lewis, 2016):  

                                                         𝐷 = 𝑋𝑟𝑎𝑛𝑑(𝑘) − 𝑋(𝑘)                                                    (3.11) 

                                                    𝑋(𝑘 + 1) = 𝑋𝑟𝑎𝑛𝑑(𝑘) − 𝐴. 𝐷                                              (3.12) 

A flow chart of the WOA algorithm is shown in Fig. 3.5, which conveys the mechanism of the 

algorithm. 
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                    Fig. 3.5   Flowchart of WOA. 
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3.3   Moth flame optimization 

Moth flame optimization is a population-based algorithm developed by Mirjalili in 2015 

(Mirjalili, 2015). It is a nature-inspired technique for providing an effective and appropriate 

solution to the problem of optimization (Mirjalili, 2015). This algorithm is inspired by the 

navigation of moths in nature. Moths set up their path by keeping a fixed angle with respect to 

the moon. This notion of moths is highly useful for their straight flight, especially when the light 

source is away. However, when the light source is nearby, moths move in a spiral path around it. 

Fig. 3.6 demonstrates the conceptual model for the transverse orientation and the moths’ spiral 

flying path. 

 

                    

                                 (a)                                                                                              (b) 

Fig. 3.6   MFO inspiration: (a) Transverse orientation, (b) Spiral flying path around a close light source. (Source: 

Mirjalili, 2015) 

In this algorithm, moths are the search agents, and flames are the most recent promising 

positions of the moths obtained during the search for the solution space. Initially, the matrices of 

moths M and flames F have the same dimension (Mirjalili, 2015). In the beginning, each moth 

moves around its corresponding flame in F along a spiral path to exploit the space around the 

flame. The moth positions are updated as follows:  

                                                      𝑆(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 . 𝑒𝑏𝑡. 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑗                                     (3.13) 

where S signifies the spiral function, 𝑀𝑖 and 𝐹𝑗 signify the ith moth and the jth flame, b indicates a 

constant that shows spiral movement shape, t represents a random number within the range from 
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−1 to 1, and 𝐷𝑖 indicates the distance from ith moth to jth flame calculated as given below: 

                                                              𝐷𝑖 = |𝐹𝑗 − 𝑀𝑖|                                                            (3.14) 

Fig. 3.7 shows the logarithmic spiral path, space around the flame, and the position considering 

at different values of t on the curve. It is clear from the figure that t = −1 shows the closest 

position to the flame, while t = 1 represents the farthest. 

 

Fig. 3.7   Logarithmic spiral and space around a flame. (Source: Mirjalili, 2015) 

According to Eq. 3.13, moths update their position to the local optimal position with respect to 

flames. After updating each moth corresponding to flame, the first and last positions of the moth 

are allotted to the best fitness flame and the worst flame, respectively.  

At the beginning of the algorithm, there was N number of flames. During the iterations, the 

number of flames was then decreased progressively as per Eq. 3.15 to balance exploitation and 

exploration in the search space (Mirjalili, 2015).  

                                                               𝐶𝑘 = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑘 ∗
𝑁−1

𝐾
)                                                 (3.15) 

where 𝑘 is the current iteration, N signifies the maximum number of flames, and K is the 

maximum number of iterations. The culmination of the iterations leads to the positioning of 

moths with respect to the best flame.  

MFO flow chart in Fig. 3.8 conveys more understanding of the detailed computational process 
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and mechanism of the algorithm. 

 

                    Fig. 3.8   Flowchart of MFO algorithm. 
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The MFO algorithm considered the same parameters as mentioned in Table 3.1. 

Initially, the controller's gain parameters were tuned using the Z-N classical method as discussed 

in Chapter 2. It was observed from Chapter 2 that in all the control schemes (conventional PID 

controller, standard SR-PID controller, and variable range SR-PID controller), the best set of the 

gain parameters was obtained for Case 3. Therefore, in view of this, in this chapter, the variable 

range SR-PID controller gain parameters were tuned for Case 3 using PSO, WOA, and MFO 

algorithms. The values of optimal gain parameters for PSO were observed as Kp = -39.56, Ki = -

8.472× 10−3, and Kd = -3.98, for WOA, Kp = -38.11, Ki = -2.214× 10−3, and Kd = -4.38, and for 

MFO, Kp = -37.72, Ki = -5.7128× 10−4, and Kd = -4.69. These gain values were then used to 

obtain the simulation results for increasing temperature setpoints (with the same signs) and 

decreasing temperature setpoints (with opposite signs). 

To find the fitness value of the search agents, in this wok, the objective function (fitness 

function) used in the above-said algorithms is as follow: 

                                                          𝐽 = 𝑤1 ∗ 𝑇𝑠 + (1 − 𝑤1) ∗ 𝐸𝑠𝑠                                         (3.16) 

where w1 is the weighing factor, Ts and Ess are setting time and steady-state error, respectively. 

The weighting factor for each parameter is taken as 0.5 (taken equal weightage for each 

parameter).  

3.4   Comparison of the nature-inspired algorithms for tuning the controller 

The performance of the controller using PSO, WOA, and MFO methods was tested for various 

temperature setpoints within the working range (22.5°C to 32.5°C).  

The system was now investigated using the set of gain parameters obtained using nature-inspired 

algorithms mentioned above, and the Z-N method (in Chapter 2). The simulation results were 

obtained for the various temperature setpoints. Based on these simulation results, a comparative 

study was made for the controller performance using the Z-N method, PSO, WOA, and MFO 

algorithms on the basis of settling time, i.e., Ts (second), as shown in Table 3.2. 
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Table 3.2   Comparative study of the transient response of SR-PID controller using classical Z-N and nature-

inspired techniques with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with no dead time) Improvement (%) 

Z-N PSO WOA MFO 
PSO 

over Z-N 

WOA 

over Z-N 

MFO 

over Z-N 

1 22.5 +3 369 197 180 176 46.61 51.22 52.30 

2 22.5 +1 116 87 77 75 25.01 33.62 35.34 

3 25 +3 565 278 254 245 50.80 55.04 56.64 

4 25 +1 166 99 89 85 40.36 45.39 47.49 

5 25 -1 628 251 218 206 60.03 65.29 67.21 

6 25 -2 4496 1004 941 907 77.67 79.07 79.83 

7 27.5 +3 1100 462 426 419 58.01 61.27 61.91 

8 27.5 +1 265 155 143 138 41.51 46.04 47.92 

9 27.5 -1 267 157 144 139 41.20 46.07 47.94 

10 27.5 -3 1107 465 428 419 57.99 61.34 62.15 

11 29 +3 3563 909 849 818 74.49 76.17 77.04 

12 29 +1 400 177 163 156 55.75 59.25 61.01 

13 29 -1 196 109 97 93 40.39 45.51 46.55 

14 29 -3 957 412 391 382 56.95 59.14 60.08 

15 32.5 -1 101 85 75 73 15.84 25.74 27.72 

16 32.5 -3 364 194 175 170 46.70 51.92 53.30 

 

It can be inferred from Table 3.2 that simulation results obtained by optimized gains of SR-PID 

controller using the MFO algorithm were better as compared to those tuned using Z-N, PSO, 

and WOA methods in terms of settling time. This is due to the optimized controller gains 

achieved through better global convergence using the MFO algorithm. In nature-inspired 

algorithms such as PSO, WOA, and MFO, the optimal gains are obtained by optimizing the 

settling time and steady-state error of the system observed during simulation of the performance 

of the system, whereas the Z-N tuning method makes use of rules based on certain 

approximations. Moreover, all the search agents in the MFO algorithm do not search around a 

single promising solution as this would increase the probability of the local optima stagnation. 

Instead, each search agent searches the solution space around only one of the recent promising 

solutions assigned to it from a set of the continuously updated set of promising solutions. This 

results in a higher exploration of the considered solution space. The spiral path of movement of 

the search agent around the promising solution assigned to it leads to better exploitation of the 

search space around that promising solution. Further, the MFO algorithm implemented in this 

work gradually decrements the number of promising solutions in the set so that an increasing 
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number of search agents search the space around the more promising solutions as the iterations 

progress. This leads to better global convergence. 

Further, the investigations were carried out with respect to the effect of dead time in the valve, 

the effect of disturbance into the process, and utility consumption. 

3.4.1   Effect of dead time in the valve 

Initially, the performance of the system was checked using PSO, WOA, and MFO algorithms 

with the valve with zero dead time (Table 3.2). Further, it was investigated with the effect of 

dead time in the valve by considering the dead time of 0.25 sec. and 0.5 sec. A comparative 

study of the transient response (in terms of Ts) of SR-PID controller for various temperature set 

points using Z-N method, PSO, WOA, and MFO algorithms with the dead time of 0.25 sec. and 

0.5 sec. is shown in Tables 3.3–3.4, respectively.  

 

Table 3.3   Performances of SR-PID controller using classical Z-N and nature-inspired techniques with a dead time 

of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with dead time of 0.25 second)   Improvement (%) 

Z-N PSO WOA MFO 
PSO 

over Z-N 

WOA 

over Z-N 

MFO 

over Z-N 

1 22.5 +3 441 223 204 199 49.43 53.74 54.88 

2 22.5 +1 136 102 90 87 26.15 33.82 36.03 

3 25 +3 662 320 293 282 51.66 55.74 57.40 

4 25 +1 196 116 104 99 40.82 45.94 47.49 

5 25 -1 736 304 268 254 58.70 63.59 65.49 

6 25 -2 5093 1215 1148 1110 76.14 77.46 78.21 

7 27.5 +3 1311 560 521 511 57.28 60.26 61.02 

8 27.5 +1 307 178 164 157 42.02 46.58 48.86 

9 27.5 -1 310 180 165 158 41.94 46.77 49.03 

10 27.5 -3 1321 565 524 512 57.23 60.33 61.24 

11 29 +3 4250 1117 1051 1016 73.72 75.27 76.09 

12 29 +1 468 196 180 171 58.12 61.54 63.46 

13 29 -1 228 126 112 107 40.74 44.88 48.07 

14 29 -3 1126 496 472 461 55.95 58.08 59.06 

15 32.5 -1 122 101 89 86 17.21 27.05 29.51 

16 32.5 -3 435 226 204 198 48.05 53.10 54.48 

 

Based on the simulation results, it can be seen from Tables 3.2–3.4 that the variable range SR-

PID controller using the MFO algorithm provided better results as compared to the controller 

using Z-N, PSO, and WOA methods in terms of settling time. 
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Table 3.4   Performances of SR-PID controller using classical Z-N and nature-inspired techniques with a dead time 

of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with dead time of 0.5 second)    Improvement (%) 

Z-N PSO WOA MFO 
PSO 

over Z-N 

WOA 

over Z-N 

MFO 

over Z-N 

1 22.5 +3 532 270 250 244 49.25 53.01 54.14 

2 22.5 +1 164 113 101 98 31.10 38.41 40.24 

3 25 +3 799 385 357 345 51.81 55.32 56.82 

4 25 +1 228 126 114 108 44.74 48.03 50.63 

5 25 -1 875 368 330 314 57.94 62.29 64.11 

6 25 -2 5836 1469 1398 1358 74.83 76.05 76.73 

7 27.5 +3 1586 682 640 629 56.99 59.65 60.33 

8 27.5 +1 362 199 184 176 45.03 49.17 51.38 

9 27.5 -1 367 202 186 180 44.96 49.32 50.95 

10 27.5 -3 1595 687 645 632 56.93 59.56 60.38 

11 29 +3 5117 1368 1299 1262 73.27 74.61 75.34 

12 29 +1 555 240 222 212 56.76 60.02 61.80 

13 29 -1 267 142 128 122 43.82 48.06 49.31 

14 29 -3 1320 594 568 556 55.01 56.97 57.88 

15 32.5 -1 149 109 97 94 26.85 34.90 36.91 

16 32.5 -3 527 271 249 243 48.58 52.75 53.89 

 

It is also clear from the above tables that MFO over Z-N has more improvement than other used 

nature-inspired algorithms over Z-N. The presence of dead time in the valve causes the 

manipulated variables to take longer to change. As a result, the system will respond slowly, 

resulting in longer settling times in all cases as compared to a system with no dead time. It can 

also be inferred that the settling times increase with an increase in dead time of the valve. 

3.4.2   Effect of disturbance in the process 

The performances of the controllers using the Z-N method, PSO, WOA, and MFO algorithms 

for tuning were investigated in terms of Ts for the same temperature setpoints. A comparative 

analysis of the transient response of the SR-PID controller for the various temperature setpoints 

using the above-said methods, considering the effect of disturbance (considered as impulse 

function in the forward path in the process at t=30 seconds) is shown in Table 3.5. The table 

shows that even in the presence of disturbance, MFO outperforms not only the Z-N method but 

also the PSO and WOA. 
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Table 3.5   Performances of SR-PID controller using classical Z-N and nature-inspired techniques with 

disturbances. 

Cases 
Setpoints 

(°C) 
Error Z-N PSO WOA MFO 

  Improvement (%) 

PSO 

over Z-N 

WOA 

over Z-N 

MFO 

over Z-N 

1 22.5 +3 387 212 194 189 45.22 49.87 51.16 

2 22.5 +1 126 99 88 85 21.43 30.16 32.54 

3 25 +3 579 297 272 262 48.70 53.02 54.75 

4 25 +1 189 113 102 97 40.21 46.03 48.68 

5 25 -1 791 306 273 259 61.31 65.49 67.26 

6 25 -2 5705 1077 1012 976 81.12 82.26 82.89 

7 27.5 +3 1157 492 454 445 57.47 60.76 61.54 

8 27.5 +1 322 177 164 159 45.03 49.07 50.62 

9 27.5 -1 324 178 165 160 45.06 49.07 50.62 

10 27.5 -3 1163 493 455 442 57.61 60.88 61.99 

11 29 +3 4848 961 898 864 80.18 81.48 82.18 

12 29 +1 501 216 201 192 56.89 59.88 61.68 

13 29 -1 228 123 110 106 44.05 48.75 49.51 

14 29 -3 975 438 415 405 55.08 57.44 58.46 

15 32.5 -1 118 96 85 82 18.64 27.97 30.51 

16 32.5 -3 377 208 187 181 44.83 50.40 51.99 

 

It can be said from Table 3.5 that when a disturbance is introduced into the process, the 

performance of the control system will be influenced in terms of settling time. In the presence of 

disturbance, the system will take longer to reach the required temperature as compared to the 

system in the absence of a disturbance. 

3.4.3   Utility consumption 

The performance of the controller was also investigated on the basis of utility consumption, i.e., 

cold utility and hot utility, considering the valve with zero dead time. As the simulation results, it 

was found that the utility consumption of cold water and hot water using a controller with MFO 

was lesser than that of Z-N, PSO, and WOA methods. The utility consumptions obtained using 

the SR-PID controller with Z-N, PSO, WOA, and MFO are presented in Tables 3.6–3.9. 
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  Table 3.6   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with Z-N and nature-           

inspired optimization techniques in case of valve with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

Z-N PSO WOA MFO 

uc uh uc uh uc uh uc uh 

1 22.5 +3 8.27 25.28 7.02 18.69 5.82 15.26 5.11 13.95 

2 22.5 +1 7.18 11.26 6.21 10.98 5.13 8.97 4.25 8.20 

3 25 +3 10.09 40.8 8.04 26.54 6.66 21.67 5.85 19.81 

4 25 +1 9.02 14.46 7.16 12.25 5.93 10.36 5.21 9.65 

5 25 -1 46.41 12.14 25.35 9.68 21.02 7.63 18.45 7.24 

6 25 -2 296.4 68.68 95.50 18.63 79.17 15.21 69.49 13.91 

7 27.5 +3 17.03 82.38 10.14 46.17 8.40 37.69 7.38 34.46 

8 27.5 +1 10.11 22.13 7.27 16.86 6.02 13.77 5.29 12.59 

9 27.5 -1 21.39 11.17 18.66 8.12 15.47 6.62 13.58 6.06 

10 27.5 -3 82.89 17.41 45.71 9.56 37.89 7.81 33.26 7.14 

11 29 +3 54.36 208.62 17.29 84.16 14.33 68.71 12.58 62.81 

12 29 +1 12.57 25.75 9.41 18.43 7.65 15.23 6.21 14.01 

13 29 -1 15.47 9.88 12.26 7.55 10.51 6.17 9.47 5.64 

14 29 -3 45.45 15.17 40.53 7.94 33.60 6.48 29.49 5.93 

15 32.5 -1 10.95 7.03 10.51 6.12 8.53 5.06 7.97 4.14 

16 32.5 -3 25.21 8.07 18.66 6.59 15.47 5.38 13.58 4.92 

 

  Table 3.7   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with Z-N and nature-      

inspired optimization techniques in case of valve with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

Z-N PSO WOA MFO 

uc uh uc uh uc uh uc uh 

1 22.5 +3 8.73 31.76 7.63 21.48 6.27 17.39 5.45 15.76 

2 22.5 +1 7.88 13.28 6.75 12.62 5.52 10.22 4.53 9.26 

3 25 +3 11.07 48.12 8.74 30.51 7.17 24.69 6.24 22.37 

4 25 +1 9.89 17.05 7.78 14.08 6.39 11.8 5.56 10.9 

5 25 -1 57.13 14.19 27.55 11.13 22.64 8.69 19.69 8.18 

6 25 -2 325.13 81 103.8 21.41 85.26 17.33 74.14 15.71 

7 27.5 +3 20.49 98.21 11.02 53.07 9.05 42.95 7.87 38.92 

8 27.5 +1 11.09 26.1 7.9 19.38 6.48 15.69 5.64 14.22 

9 27.5 -1 23.46 13.17 20.28 9.33 16.66 7.54 14.49 6.84 

10 27.5 -3 98.84 20.63 49.68 10.99 40.81 8.9 35.49 8.06 

11 29 +3 59.63 246.05 18.79 96.74 15.43 78.29 13.42 70.94 

12 29 +1 11.97 29.37 10.23 21.18 8.24 17.35 6.63 15.82 

13 29 -1 16.97 11.65 13.33 8.68 11.32 7.03 10.1 6.37 

14 29 -3 49.86 17.89 44.05 9.13 36.19 7.38 31.46 6.7 

15 32.5 -1 12.01 7.56 11.42 7.03 9.19 5.77 8.5 4.68 

16 32.5 -3 31.17 8.38 20.28 7.57 16.66 6.13 14.49 5.56 
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Table 3.8   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with Z-N and nature-    

inspired optimization techniques in case of valve with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

Z-N PSO WOA MFO 

uc uh uc uh uc uh uc uh 

1 22.5 +3 10.67 37.67 8.45 25.12 6.82 19.99 5.98 18.27 

2 22.5 +1 9.29 15.8 7.47 14.76 6 11.75 4.97 10.74 

3 25 +3 13.06 57.24 9.67 35.68 7.79 28.38 6.84 25.94 

4 25 +1 11.66 20.28 8.61 16.47 6.95 13.56 6.1 12.64 

5 25 -1 73.44 16.19 30.5 13.02 24.61 9.99 21.6 9.48 

6 25 -2 383.47 96.34 114.9 25.04 92.67 19.92 81.33 18.21 

7 27.5 +3 24.66 119.05 12.2 62.06 9.84 49.37 8.63 45.13 

8 27.5 +1 13.08 31.04 8.74 22.66 7.04 18.03 6.19 16.49 

9 27.5 -1 27.67 15.66 22.45 10.91 18.11 8.67 15.89 7.93 

10 27.5 -3 118.69 25.37 54.99 12.85 44.36 10.23 38.93 9.35 

11 29 +3 70.33 292.66 20.8 113.13 16.77 89.99 14.72 82.25 

12 29 +1 13.28 38.74 11.32 24.77 8.96 19.94 7.27 18.34 

13 29 -1 20.02 13.86 14.76 10.15 12.3 8.08 11.08 7.39 

14 29 -3 58.81 21.28 48.76 10.68 39.34 8.48 34.51 7.77 

15 32.5 -1 14.17 8.99 12.64 8.22 9.99 6.63 9.32 5.43 

16 32.5 -3 37.59 10.30 22.45 8.85 18.11 7.05 15.89 6.45 

 

  

    Table 3.9   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with Z-N and nature-

inspired optimization techniques in case of valve with disturbance and no dead time. 

Cases 
Setpoints 

(°C) 
Error 

Z-N PSO WOA MFO 

uc uh uc uh uc uh uc uh 

1 22.5 +3 8.87 26.82 7.61 20.26 6.37 16.73 5.64 15.51 

2 22.5 +1 7.68 11.94 6.73 11.9 5.61 9.83 4.69 9.12 

3 25 +3 10.8 43.25 8.72 28.77 7.29 23.75 6.46 22.03 

4 25 +1 9.65 15.33 7.76 13.28 6.49 11.36 5.75 10.73 

5 25 -1 49.66 11.82 27.49 10.51 23.01 8.36 20.38 8.05 

6 25 -2 327.15 72.8 106.43 20.22 89.02 16.67 80.92 15.47 

7 27.5 +3 18.22 86.51 11.69 50.06 9.19 41.32 8.15 38.32 

8 27.5 +1 10.82 23.46 7.88 18.28 6.59 15.09 5.84 14.03 

9 27.5 -1 22.89 11.84 20.24 8.82 16.93 7.26 15.03 6.74 

10 27.5 -3 87.98 18.87 49.57 10.36 41.47 8.56 36.73 7.94 

11 29 +3 58.17 221.14 18.75 93.77 15.68 77.38 13.89 72.35 

12 29 +1 12.98 27.32 10.24 19.98 8.37 16.7 6.86 15.58 

13 29 -1 16.55 10.47 13.31 8.19 11.5 6.76 10.46 6.27 

14 29 -3 48.63 16.08 43.95 8.61 36.77 7.1 32.57 6.59 

15 32.5 -1 11.72 7.45 11.42 6.64 9.34 5.55 8.81 4.62 

16 32.5 -3 26.21 8.58 20.24 7.14 16.93 5.9 15.18 5.47 

 

It can be observed from the above Tables 3.6–3.9 that the utility consumption of cold and hot 

water using SR-PID controller tuned with MFO algorithm was lesser as compared to the 

controller tuned with Z-N method, PSO, and WOA algorithms. 
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The scope for further improvement in the original MFO algorithm has also been explored. 

Various researchers have reported modifications in the original MFO algorithm (Li et al., 2021; 

Ma et al., 2021; Mohanty & Panda, 2021; Sapre & Mini, 2021; Shehab et al., 2021; Suja, 2021; 

Xia et al., 2021; Bandopadhyay & Roy, 2020; Zhiling Cui et al., 2020; Dash et al., 2020; Dash et 

al., 2020a; Elattar & Elsayed, 2020; Elaziz et al., 2020; Fei et al., 2020; Helmi & Alenany, 2020; 

Kaur et al., 2020; Korashy et al., 2020; Li Yu et al., 2020; Lin et al., 2020; Pelusi et al., 2020; 

Reddy & Bojja, 2020; Sayed et al., 2020; R. Sharma & Saha, 2020; Yu et al., 2020; Zhang Z. et 

al., 2020; Zhang H. et al., 2020; Zhao et al., 2020; Buch & Trivedi, 2019; Hongwei et al., 2019; 

Jain & Saxena, 2019; Jia et al., 2019; Khalilpourazari & Khalilpourazary, 2019; Li et al., 2019; 

Luo et al., 2019; Rashid et al., 2019; Sapre & Mini, 2019; Sheng et al., 2019; Singh et al., 2019; 

Taher et al., 2019; Wu et al., 2019; Xu Y. et al., 2019; Xu Y. et al., 2019a; Elsakaan et al., 2018; 

Jangir & Trivedi, 2018; Kamalapathi et al., 2018; Li C. et al., 2018; Li W. K. et al., 2018; Reddy 

et al., 2018; Sayed & Hassanien, 2018; Xu L. et al., 2018; Anfal & Abdelhafid, 2017; Aziz et al., 

2017; Bhesdadiya et al., 2017; Gholizadeh et al., 2017; Hassanien et al., 2017; Jangir P., 2017; 

Savsani & Tawhid, 2017; M. Wang et al., 2017; W. Yang et al., 2017; Li et al., 2016; Soliman et 

al., 2016; Vikas & Nanda, 2016; Zhang et al., 2016) and also shown in a table in Appendix I. 

Most of these modifications involve additional parameters and computational complexity. 

Hence, in the current work, it was decided to explore only such modifications that do not add 

parameters and complex computations to the existing algorithm.  

The current work investigates the effect of the following three modifications and their 

combination in improving the exploitation and exploration capabilities along with improvement 

in convergence: (i) modifying the spiral path for improved exploitation of the search space, (ii) 

use of opposition theory to create the initial population consisting of search agents with better 

prospects as compared to the original MFO algorithm, (iii) change in the flame matrix to include 

better flames to improve exploration and convergence and (iv) combination of these three 

modifications. The effect of these modifications on the performance of the variable range SR-

PID controller is studied. 

3.5   Improvements in MFO   

In light of the superior performance of the MFO algorithm for tuning the PID controller, some 

improvements in the MFO algorithm were proposed to further enhance the performance of the 
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MFO algorithm for tuning the PID controller. It was decided to explore the solution space more 

efficiently using a variable spiral path, opposition-based learning, and modification in the flame 

selection. The incorporation of the three proposed improvements in the original MFO algorithm 

resulted into three improved MFO algorithms namely, IMFO 1, IMFO 2, and IMFO 3, 

respectively. Further, the above three were combined to form the Enhanced MFO (EMFO) 

algorithm (Vishnoi et al., 2021b). 

3.5.1   Improved moth flame optimization 1 (IMFO 1) algorithm  

In the original MFO algorithm, the logarithmic spiral path was used, as shown in Fig. 3.9 (a), in 

which moths move around the flames from infinite to origin with a varying pitch of the spiral 

path. This results in non-uniform exploitation of the search space around the flames. As a result, 

the final global solution may not be optimum. To further explore the search space properly, it 

was thought to change the spiral path. Sun et al. presented an improved whale optimization 

algorithm based on eight different search paths for optimizing 23 functions, where the 

Archimedean spiral path provided superior performance as compared to the other seven spiral 

paths used (Sun et al., 2018). This motivated us to consider the Archimedean spiral path in the 

MFO algorithm, as described in Eq. 3.17.  

                                                    𝑆(𝑀𝑖, 𝐹𝑗) = 𝐷𝑖 . 𝑡. 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝑗                                          (3.17) 

                                                             
                                     𝑟 = 𝑎𝑒𝑏𝛽                                                                                     𝑟 = 𝑎𝛽  

              (a)   Logarithmic spiral                                                 (b)   Archimedean spiral  

Fig. 3.9   Different spirals path. (Source: Sun et al., 2018) 
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The Archimedean spiral path is shown in Fig. 3.9 (b), which initiates from its origin and 

generates a curve with a constant pitch, due to which the potential solutions may be found 

uniformly in the complete solution space leading to faster convergence toward a better optimum 

solution. 

3.5.2   Improved moth flame optimization 2 (IMFO 2) algorithm 

This section represents an improved version of the MFO algorithm based on the opposition 

learning theory. The concept of this theory, first introduced by Tizhoosh in 2005 (Tizhoosh, 

2005), can be used to enhance the basic meta-heuristic methods to obtain the optimal solution to 

any problem of optimization. Generally, optimization algorithms start with a random initial 

population due to the lack of prior knowledge about the solution, which increases the chance of 

visiting unproductive regions of the search space. Hence, to overcome such inherent problems, 

the opposition learning based initialization has been reported in the literature (Choi et al., 2019; 

Dinkar & Deep, 2018, 2019; Gaidhane & Nigam, 2018; Gupta & Deep, 2019; Rahnamayan et 

al., 2008; Sapre & Mini, 2019; Wang, 2015). Mathematically, it has been proved that opposite 

numbers are more likely to be closer to the optimal solution than random ones (Rahnamayan et 

al., 2008a). This motivated us to employ the opposition learning theory in the MFO algorithm for 

boosting the performance of the algorithm.  

The following steps show the procedure to select the initial population based on the opposite 

population. 

Step-1   Initialize the random population Pij, i = 1, 2, ..., N; j = 1, 2, 3. 

Step-2   Evaluate its opposite population Qij based on the opposition learning theory:   

                                                 Qij = ubi + lbi - Pij                                                              (3.18) 

Step-3   Pick the N fittest candidates based on the fitness values from the set of these two     

             populations, i.e., (Pij ∪ Qij).  

By doing this, N fittest candidates (random or its opposite solution) can be selected as a starting 

population that leads to faster convergence towards the best solution using the Archimedean 

spiral path. 
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3.5.3   Improved moth flame optimization 3 (IMFO 3) algorithm 

In the original MFO algorithm, flames are updated by sorting the updated moths, as discussed in 

section 3.3. This method, however, suffers from the inherent problem of non-exploration of 

complete solution space (Kaur et al., 2020; Pelusi et al., 2020; Reddy et al., 2018; Sheng et al., 

2019). This motivated us to devise a new search strategy that explores the solution space fully, 

probably leading to a better optimal solution. This strategy proposes to update the current flame 

matrix by introducing better new flames from the solution space. The method of selection of the 

new better flames from the solution space is random in nature. The steps for the proposed 

strategy for kth iterations are as follows: 

Step-1   Select the random flames Sij within the boundary, i = 1, 2, ..., N; j = 1, 2, 3. 

Step-2   Merge these random flames Sij with the current flames Fij as evaluated initially in 

the original MFO algorithm.  

Step-3   Select the N fittest flames FFij based on their fitness value from a set of two (Sij ∪ 

Fij).  

Step-4   Update the position of the moths Mij in respect of corresponding N fittest flames 

FFij. 

Step-5   Update the remaining last (N − Ck) moths’ position of Mij with respect to the fittest 

flame position FF1j. 

In this algorithm, the moths are updated using the Archimedean spiral path. 

3.5.4   Enhanced moth flame optimization (EMFO) algorithm 

This approach proposed a new version of the MFO algorithm by combining all the above-said 

algorithms, namely IMFO 1, IMFO 2, and IMFO 3, to merge the advantages of all the above-

mentioned algorithms. The steps for the proposed EMFO algorithm are as follows: 

Step-1   Initialize the same number of search agents (N), the variable dimension (D), the 

maximum number of iterations (K), and the upper and lower bounds (ub and lb), as 

mentioned in Table 3.1.  

Step-2    Generate N most suitable search agents from two populations (Pij ∪ Qij) on the 

basis of their fitness values, where Pij is the random population within the range 

(bounds), i = 1, 2, ..., N; j = 1, 2, 3, and Qij is the opposite population. 
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Step-3    Calculate the moths’ fitness values as per Eq. 3.16 and identify the best positions as 

flames. 

Step-4    Update flame number as per Eq. 3.19: 

                                                   𝐶𝑘 = 𝑟𝑜𝑢𝑛𝑑(𝑁 − 𝑘 ∗
𝑁−1

𝐾
)                                            (3.19) 

 where N indicates the maximum number of flames, 𝑘 denotes the current iteration, 

and K signifies the maximum number of iterations. 

Step-5   Find new flames FFj as the N most suitable flames on the basis of their fitness 

values from (Sij ∪ Fij), where Sij is the set of random flames, and Fij is the set of 

existing flames as calculated first in the basic MFO algorithm. 

Step-6    Compute the distance Di between the new flames FFj and the corresponding moths  

𝑀𝑖, i.e. 

                                                       𝐷𝑖 = |𝐹𝐹𝑗 − 𝑀𝑖|                                                         (3.20) 

Step-7     Update the convergence constant r and parameter t as per Eq. 3.21 and 3.22: 

                                                     𝑟 = −1 + 𝑘 ∗ ( 
−1

𝐾
 )                                                     (3.21) 

                                                    𝑡 = (𝑟 − 1) ∗ 𝑟𝑎𝑛𝑑 + 1                                                (3.22) 

Step-8    Change the moths’ position with respect to corresponding new flames FFj as per 

the following equation: 

                                             𝑆(𝑀𝑖 , 𝐹𝐹𝑗) = 𝐷𝑖 . 𝑡. 𝑐𝑜𝑠(2𝜋𝑡) + 𝐹𝐹𝑗                                      (3.23) 

where S indicates the spiral function, 𝑀𝑖 represents the ith moths corresponding to 

jth new flames FFj, and t denotes a random number in the range from -1 to 1. 

Step-9     Iteration = Iteration+1. 

Step-10  If current iteration (𝑘) > max. iteration (𝐾), then show the best moth position 

among the others; else, go to Step 3 and repeat. 

The parameters for all the improved MFO algorithms were considered the same, as shown in 

Table 3.1. 
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3.6   Results and discussion  

The performance of the controllers tuned using the improved versions of the MFO algorithm 

(IMFO 1, IMFO 2, IMFO 3, and EMFO) for the cases under consideration were simulated and 

compared with the performance of the controller tuned using the original MFO algorithm in 

terms of settling time, as presented in Table 3.10. 

Table 3.10   Comparative study of the transient response of SR-PID controller using MFO and improved MFO 

algorithms. 

Cases 
Setpoints 

(°C) 
Error MFO IMFO 1 IMFO 2 IMFO 3 EMFO 

1 22.5 +3 176 168 163 156 148 

2 25 -1 206 194 179 176 160 

3 27.5 +3 419 392 383 367 329 

4 27.5 -3 419 396 386 371 335 

5 29 +1 156 151 144 136 127 

6 32.5 -3 170 166 160 155 147 

 

It can be inferred from the simulation results in Table 3.10 that each of the proposed 

modifications has led to improvements in the controller performance as compared to the original 

MFO algorithm. A comparison is presented in Fig. 3.10. 

 

 

Fig. 3.10   Percentage improvement in the performances of SR-PID controller using MFO and improved MFO 

algorithms. 
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On the basis of simulation results in Table 3.10 and the relative performance of the proposed 

algorithms shown in Fig. 3.10, EMFO has been found to be the most efficient in improving the 

performance of the controller in terms of settling times. 

It is observed that IMFO 1, where the spiral path was changed to ensure a uniform search in the 

solution space, has led to improved solutions indicating better exploitation of the solution space. 

The improved solutions (controller gains) have resulted in a considerable decrease in settling 

time. The improvement in the case of IMFO 2 is more than that of IMFO 1 as IMFO 2 

combines the advantage of IMFO 1 and the benefit of using opposition-based learning for 

generating an optimal initial population. An optimal initial population converges to better 

solutions in fewer iterations along with a better spiral path in IMFO 2 has resulted in an 

improved search of the solution space. The original MFO algorithm exploits the solution space 

around probable fitter solutions in search of the global optima. In IMFO 3, a random search for 

even fitter probable solutions is made in each iteration to ensure a better exploration of the 

solution space. This improved exploration is combined with better exploitation due to the spiral 

path of IMFO 1 in IMFO 3, resulting in even better controller gains that further reduce the 

settling times. The last of the proposed algorithms (EMFO) demonstrates the best performance 

as it combines the advantages of the first three algorithms. It has an optimal initial population 

using a better spiral path to search around even fitter probable candidates for the global optima. 

This ensures that optimal controller gains are provided in case of the EMFO algorithm resulting 

in a significant reduction in the settling time for all the cases under consideration. 

Further, the investigations were made to study the effect of dead time (considering a dead time 

of 0, 0.25, and 0.5 seconds in the valve) and process disturbance. A comparison was made for 

the transient performance of the SR-PID controller for various temperature setpoints using the 

original MFO and EMFO algorithms with and without dead time and disturbance as shown in 

Tables 3.11–3.16.  
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Table 3.11   Performances of SR-PID controller using MFO and EMFO algorithms with no dead time. 

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 176 148 15.91 

2 22.5 +1 75 46 38.67 

3 25 +3 245 182 25.71 

4 25 +1 85 53 37.65 

5 25 -1 206 160 22.33 

6 25 -2 907 545 39.91 

7 27.5 +3 419 329 21.48 

8 27.5 +1 138 103 25.36 

9 27.5 -1 139 101 27.34 

10 27.5 -3 419 335 20.05 

11 29 +3 818 657 19.68 

12 29 +1 156 127 18.59 

13 29 -1 93 68 26.88 

14 29 -3 382 217 43.19 

15 32.5 -1 73 45 38.36 

16 32.5 -3 170 147 13.53 

 

 

Table 3.12   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.25 sec.  

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 199 157 21.11 

2 22.5 +1 87 52 40.23 

3 25 +3 282 196 30.5 

4 25 +1 99 60 39.39 

5 25 -1 254 177 30.31 

6 25 -2 1110 588 47.03 

7 27.5 +3 511 351 31.31 

8 27.5 +1 157 113 28.03 

9 27.5 -1 158 112 29.11 

10 27.5 -3 512 355 30.66 

11 29 +3 1016 699 31.2 

12 29 +1 171 139 18.71 

13 29 -1 107 76 28.97 

14 29 -3 461 230 50.11 

15 32.5 -1 86 50 41.86 

16 32.5 -3 198 155 21.72 
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Table 3.13   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.5 sec.  

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 244 171 29.92 

2 22.5 +1 98 60 38.71 

3 25 +3 345 218 36.81 

4 25 +1 108 69 36.11 

5 25 -1 314 198 36.94 

6 25 -2 1358 652 51.99 

7 27.5 +3 629 379 39.75 

8 27.5 +1 176 126 28.41 

9 27.5 -1 180 125 30.56 

10 27.5 -3 632 385 39.08 

11 29 +3 1262 772 38.83 

12 29 +1 212 155 26.89 

13 29 -1 122 85 30.33 

14 29 -3 556 248 55.4 

15 32.5 -1 94 58 38.3 

16 32.5 -3 243 167 31.28 

 

Table 3.14   Performances of SR-PID controller using MFO and EMFO algorithms with disturbance and no dead 

time. 

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 189 155 17.99 

2 22.5 +1 85 50 41.18 

3 25 +3 262 191 27.1 

4 25 +1 97 59 39.18 

5 25 -1 259 178 31.27 

6 25 -2 976 571 41.5 

7 27.5 +3 445 342 23.15 

8 27.5 +1 159 113 28.93 

9 27.5 -1 160 112 30.01 

10 27.5 -3 442 348 21.27 

11 29 +3 864 681 21.18 

12 29 +1 192 134 30.21 

13 29 -1 106 76 28.3 

14 29 -3 405 226 44.2 

15 32.5 -1 82 48 41.46 

16 32.5 -3 181 152 16.02 
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Table 3.15   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.25 sec. 

and disturbance. 

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 213 166 22.07 

2 22.5 +1 98 57 41.84 

3 25 +3 301 208 30.9 

4 25 +1 112 67 40.18 

5 25 -1 308 196 36.36 

6 25 -2 1180 615 47.88 

7 27.5 +3 538 365 32.16 

8 27.5 +1 179 124 30.73 

9 27.5 -1 180 124 31.11 

10 27.5 -3 536 369 31.16 

11 29 +3 1063 724 31.89 

12 29 +1 208 147 29.33 

13 29 -1 121 85 29.75 

14 29 -3 485 241 50.31 

15 32.5 -1 96 55 42.71 

16 32.5 -3 210 164 21.9 

 

Table 3.16   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.5 sec. and 

disturbance. 

Cases 
Setpoints 

(°C) 
Error MFO EMFO 

Improvement (%) 

EMFO over MFO 

1 22.5 +3 260 182 30.38 

2 22.5 +1 111 68 38.74 

3 25 +3 365 234 36.99 

4 25 +1 123 78 37.4 

5 25 -1 370 227 38.65 

6 25 -2 1430 697 52.52 

7 27.5 +3 658 403 39.97 

8 27.5 +1 200 138 31.01 

9 27.5 -1 204 138 32.35 

10 27.5 -3 658 407 39.36 

11 29 +3 1311 816 38.98 

12 29 +1 251 169 32.67 

13 29 -1 138 95 31.16 

14 29 -3 582 263 55.5 

15 32.5 -1 106 66 38.68 

16 32.5 -3 257 176 31.52 

Based on the simulation results, it can be said from Tables 3.11–3.16 that in all the scenarios, the 

SR-PID controller using EMFO algorithm outperforms the controller with the original MFO 

algorithm. 
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The performance of the controller is also studied in terms of utility consumption. The same is 

carried out for the above-considered setpoints. The consumption of utility using the controller 

with MFO and EMFO is presented in Tables 3.17–3.22. 

Table 3.17   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of valve with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

MFO  EMFO  

uc uh uc uh 

1 22.5 +3 5.11 13.95 4.51 11.48 

2 22.5 +1 4.25 8.20 4.18 5.83 

3 25 +3 5.85 19.81 5.43 16.42 

4 25 +1 5.21 9.65 4.59 6.94 

5 25 -1 18.45 7.24 15.53 5.39 

6 25 -2 69.49 13.91 45.42 9.06 

7 27.5 +3 7.38 34.46 5.98 27.21 

8 27.5 +1 5.29 12.59 4.84 9.75 

9 27.5 -1 13.58 6.06 9.62 4.81 

10 27.5 -3 33.26 7.14 27.08 5.93 

11 29 +3 12.58 62.81 11.07 54.36 

12 29 +1 6.21 14.01 5.97 11.3 

13 29 -1 9.47 5.64 6.19 4.36 

14 29 -3 29.49 5.93 18.97 4.55 

15 32.5 -1 7.97 4.14 5.69 4.11 

16 32.5 -3 13.58 4.92 11.33 4.38 

 

Table 3.18   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of valve with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO  EMFO  

uc uh uc uh 

1 22.5 +3 5.45 15.76 4.8 12.9 

2 22.5 +1 4.53 9.26 4.45 6.55 

3 25 +3 6.24 22.37 5.78 18.45 

4 25 +1 5.56 10.9 4.89 7.8 

5 25 -1 19.69 8.18 16.54 6.06 

6 25 -2 74.14 15.71 48.36 10.18 

7 27.5 +3 7.87 38.92 6.37 30.57 

8 27.5 +1 5.64 14.22 5.15 10.95 

9 27.5 -1 14.49 6.84 10.24 5.41 

10 27.5 -3 35.49 8.06 28.83 6.66 

11 29 +3 13.42 70.94 11.79 61.07 

12 29 +1 6.63 15.82 6.36 12.7 

13 29 -1 10.1 6.37 6.59 4.91 

14 29 -3 31.46 6.7 20.2 5.11 

15 32.5 -1 8.5 4.68 6.06 4.61 

16 32.5 -3 14.49 5.56 12.06 4.92 
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Table 3.19   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of valve with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO  EMFO  

uc uh uc uh 

1 22.5 +3 5.98 18.27 5.25 14.83 

2 22.5 +1 4.97 10.74 4.87 7.53 

3 25 +3 6.84 25.94 6.33 21.21 

4 25 +1 6.1 12.64 5.35 8.97 

5 25 -1 21.6 9.48 18.11 6.97 

6 25 -2 81.33 18.21 52.94 11.7 

7 27.5 +3 8.63 45.13 6.97 35.14 

8 27.5 +1 6.19 16.49 5.64 12.59 

9 27.5 -1 15.89 7.93 11.21 6.21 

10 27.5 -3 38.93 9.35 31.56 7.66 

11 29 +3 14.72 82.25 12.91 70.2 

12 29 +1 7.27 18.34 6.96 14.6 

13 29 -1 11.08 7.39 7.21 5.63 

14 29 -3 34.51 7.77 22.11 5.87 

15 32.5 -1 9.32 5.43 6.63 5.31 

16 32.5 -3 15.89 6.45 13.2 5.66 

 

Table 3.20   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of disturbance. 

Cases 
Setpoints 

(°C) 
Error 

MFO  EMFO  

uc uh uc uh 

1 22.5 +3 5.64 15.51 4.93 12.68 

2 22.5 +1 4.69 9.12 4.57 6.44 

3 25 +3 6.46 22.03 5.94 18.14 

4 25 +1 5.75 10.73 5.02 7.67 

5 25 -1 20.38 8.05 16.99 5.96 

6 25 -2 80.92 15.47 49.68 10.01 

7 27.5 +3 8.15 38.32 6.54 30.06 

8 27.5 +1 5.84 14.03 5.29 10.77 

9 27.5 -1 15.03 6.74 10.52 5.31 

10 27.5 -3 36.73 7.94 29.62 6.55 

11 29 +3 13.89 72.35 12.11 60.06 

12 29 +1 6.86 15.58 6.53 12.48 

13 29 -1 10.46 6.27 6.77 4.82 

14 29 -3 32.57 6.59 20.75 5.03 

15 32.5 -1 8.81 4.62 6.22 4.53 

16 32.5 -3 15.18 5.47 12.39 4.84 
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Table 3.21   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of disturbance and valve with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO  EMFO  

uc uh uc uh 

1 22.5 +3 6.07 17.6 5.28 14.34 

2 22.5 +1 5.05 10.34 4.89 7.28 

3 25 +3 6.95 24.99 6.36 20.51 

4 25 +1 6.2 12.17 5.38 8.67 

5 25 -1 21.94 9.14 18.19 6.74 

6 25 -2 82.62 17.55 53.18 11.31 

7 27.5 +3 8.77 43.47 7.01 33.98 

8 27.5 +1 6.29 15.88 5.66 12.17 

9 27.5 -1 16.15 7.64 11.26 6.32 

10 27.5 -3 39.55 9.03 31.71 7.41 

11 29 +3 14.96 79.24 12.97 67.88 

12 29 +1 7.39 17.67 6.99 14.12 

13 29 -1 11.26 7.11 7.25 5.45 

14 29 -3 35.06 7.48 22.21 5.68 

15 32.5 -1 9.47 5.23 6.66 5.12 

16 32.5 -3 16.15 6.21 13.26 5.47 

 

Table 3.22   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO and EMFO in 

case of disturbance and valve with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO   EMFO  

uc uh uc uh 

1 22.5 +3 6.72 20.48 5.84 16.05 

2 22.5 +1 5.59 12.04 5.41 8.15 

3 25 +3 7.69 29.08 7.03 22.96 

4 25 +1 6.86 14.17 5.95 9.71 

5 25 -1 24.29 10.63 20.12 7.55 

6 25 -2 91.45 20.41 58.82 12.66 

7 27.5 +3 9.7 50.59 7.75 38.04 

8 27.5 +1 6.96 18.48 6.26 13.62 

9 27.5 -1 17.87 8.89 12.45 6.72 

10 27.5 -3 43.77 10.48 35.07 8.28 

11 29 +3 16.55 92.2 14.34 75.99 

12 29 +1 8.17 20.56 7.73 15.81 

13 29 -1 12.46 8.28 8.02 6.11 

14 29 -3 38.8 8.71 24.56 6.36 

15 32.5 -1 10.48 6.09 7.37 5.73 

16 32.5 -3 17.87 7.23 14.67 6.12 

 

It was found from Tables 3.17–3.22 that the utility consumption of cold and hot water (uc and uh) 

using the controller with the EMFO algorithm was lower when compared to the original MFO 
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algorithm. The simulation results also show that hot utility consumption increases for the same 

desired rise as we move upward in the working range of the temperature. This is so because at 

higher temperatures, the difference between the temperature of the hot water inflowing and the 

tank temperature reduces. As a result, the amount of hot water flowing into the tank to bring 

about the same desired rise in the temperature increases. For similar reason, the cold water 

consumption increases for the same desired fall in the temperature as we move downward in the 

working range of temperature. 

It can also be said from Tables 3.17–3.19 that the hot and cold utility consumptions rise as the 

valve's dead time increases. These utility consumptions (uh and uc) rise even more when 

disturbances and dead times are introduced (Tables 3.21–3.22). 

Moreover, a comparison between the original MFO and EMFO algorithms was made with 

regard to the values of fitness function and its convergence as the iterations progressed. It was 

observed that the value of the fitness function in the very first iteration was less in the case of 

the EMFO algorithm as compared to the MFO algorithm. It was also found that the fitness 

function converged faster to a comparatively smaller value in the case of the EMFO algorithm 

as compared to the original MFO algorithm for all the considered set points. Fig. 3.11 shows the 

fitness function’s convergence with iterations proceeded for Cases 5, 7, 10, and 12 listed in 

Table 3.11 (cases without dead time). Similar trends were observed in all other cases. 
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                (b) 

 
                   (c)  

 
                 (d)  

  Fig. 3.11   Convergence diagram for MFO and EMFO for the cases: (a) Case 5, (b) Case 7, (c) Case 10, and (d) 

Case 12. 
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It can be inferred for all the scenarios that simulation results obtained by optimized gains of 

variable range SR-PID controller using EMFO algorithm were better as compared to those 

tuned using MFO method in terms of settling time (Tables 3.11–3.16) and utility consumptions 

(Tables 3.17–3.22). This is due to the optimized controller gains obtained through better global 

convergence using the EMFO algorithm. 

Finally, it can be inferred from the above discussion that the EMFO algorithm provided the best 

results as compared to the original MFO, IMFO 1, IMFO 2, and IMFO 3 algorithms. It is 

because of better solutions found during the search process in solution space. Due to this, the 

algorithm converged fast into the best solution.  

 

The chapter investigated the performance of the variable range SR-PID controller tuned offline 

using the different nature-inspired algorithms. The simulation results obtained from these 

algorithms were compared with the performance of the SR-PID controller tuned using the Z-N 

method in terms of settling time. It has been observed that as compared to both the PSO and 

WOA algorithms, MFO algorithm-based controller outperformed the Z-N method-based 

controller in all the scenarios, i.e., the effect of dead time in the valve, the effect of disturbance 

in the process, and utility consumption. To further improve the system’s performance, this 

chapter also proposed modifications in the original MFO algorithm in three phases. A new 

version of the MFO (EMFO) algorithm was obtained by combining all the three phases of 

modification and used to tune the SR-PID controller in offline mode. It was found that the 

controller using the EMFO algorithm outperformed the controller using the original MFO 

algorithm in all the scenarios. Further, this work can be extended by updating the controller gain 

parameters online using the original and modified versions of the MFO algorithm for improving 

the performance of the variable range SR-PID controller.  
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                                                                                                  Chapter 4 

  

Performance Evaluation of Online Tuned Variable Range 

SR-PID Controller 
 

This chapter presents an online tuning approach using the original and 

improved versions of the MFO algorithms for optimizing the parameters of 

variable range split range PID controller to control the temperature of the 

mixing process. The performances of the controllers are investigated for the 

various temperature setpoints in terms of settling time and compared with 

performances obtained using the offline tuning approach with the MFO 

algorithm. Further, the performance of the online tuned controller using the 

proposed algorithm (EMFO) is investigated with respect to the effect of 

system dynamics and the effect of process disturbance. 

 

Adaptive or continuously online tuned PID controllers are increasingly becoming popular as they 

outperform the conventional offline tuned PID controller in varying conditions (Hernández-

Alvarado et al., 2016; Kofinas & Dounis, 2019). The performance of the controller depends on 

the selection of the gains. Conventionally, the gains of the controllers are fixed and obtained by 

tuning the controller offline at an operating condition. However, the controller with fixed gains 

may fail to provide adequate control action due to (i) change in operating conditions, (ii) 

parameter drift in the system resulting from scaling of orifices, variations in instruments and 

sensors with time, (iii) sudden disturbances, and (iv) inherent nonlinearities of the system. 

Adaptive controllers overcome these difficulties as their gains are updated continuously online. 

This continuous updating of the controller gains enables the controller to handle the variations 

more effectively, resulting in improved performance of the plant (El-Gendy et al., 2020; Memon 

& Shao, 2020; Colombino et al., 2020; Kofinas & Dounis, 2018, 2019; Zhou et al., 2019; Chen et 

al., 2019; Davanipour et al., 2018; Tamilselvan & Aarthy, 2017).  

The use of metaheuristic algorithms (PSO, WOA, and MFO) for tuning the controller gains of the 
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PID controller used in a variable range of split range control scheme for regulating the 

temperature of a mixing process has been presented in Chapter 3. The performance of this offline 

(PSO, WOA, and MFO) tuned controller compared favorably with the performance of the 

conventional Ziegler Nichols (Z-N) tuned PID controller. However, since an online tuned 

controller provides a better control action as compared to an offline tuned controller in varying 

conditions, the current work presents a continuously online tuned PID controller employed in the 

variable range split range control scheme to provide an improved regulation of the temperature of 

a mixing process. The continuous updating of the gains of the controller is done using the MFO 

algorithm as it was found to be the best among the algorithms considered in Chapter 3. 

The optimization algorithm used for the continuous online updating of the controller gains should 

converge fast to a solution that improves the system performance. With this aim, the enhanced 

MFO algorithm presented in Chapter 3 has been employed to continuously update the gains of the 

PID controller. This chapter also presents the effect of modifications in the algorithm on the 

performance of the online tuned PID controller. 

4.1   Online tuning approach 

This approach was used by considering the same gain parameters initially, which were obtained 

using the offline tuning method. During the cycle of the process, the controller gain parameters 

were updated continuously after a fixed interval of time, and the gain parameters were adjusted as 

per the current situation of the process (Vishnoi et al., 2021b). The same objective function (used 

in Chapter 3) was considered in this approach for an appropriate comparison of the controller 

performance. The objective function is given below for reference. 

                                                          𝐽 = 𝑤1 ∗ 𝑇𝑠 + (1 − 𝑤1) ∗ 𝐸𝑠𝑠                                            (4.1) 

where w1 denotes the weighting factor, Ts indicates setting time, and Ess represents steady-state 

error. Ts and Ess were assigned with equal weightage as 0.5 to calculate the fitness value. 

4.2   Results and discussion 

The mixing process using the variable range SR-PID controller for controlling the temperature of 

the water tank was modeled and simulated in MATLAB/Simulink. The controller gains were 
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initially obtained by the offline tuning approach, as described in Chapter 3. To further improve 

the performance of the controller, this work proposed to update the controller gains continuously 

during the cycle of the process. This updating of the controller gains was done using the MFO 

algorithm (observed as the best optimization algorithm among the others used) after fixed 

intervals of time to adjust the gain parameters to get optimum performance as per the current 

situation. A more frequent updating (shorter fixed interval) will give an improved performance 

but at the cost of the computational burden. In this work, the effect of the various duration of the 

fixed interval of time (after which the gains are to be updated) on the performance of the online 

tuned controller was investigated. The simulation results were obtained for different temperature 

setpoints within the working range (22.5°C to 32.5°C) and compared with the performance of the 

offline tuned controller in terms of settling time (Ts), as shown in Table 4.1.   

 

Table 4.1   Comparative study of the transient response of SR-PID controller tuned offline and online (with the 

various duration of the fixed interval of time) using the MFO algorithm. 

Cases 
Setpoints  

(°C) 
Error Offline  

Duration 

of 3 sec.   

Duration 

of 5 sec.   

Duration 

of 8 sec.   

Duration 

of 10 sec.   

Duration 

of 20 sec.   

Duration 

of 22 sec.   

1 22.5 +3 176 129 131 138 142 168 177 

2 22.5 +1 75 47 49 55 58 69 73 

3 25 +3 245 181 187 201 209 236 247 

4 25 +1 85 58 61 69 73 84 89 

5 25 -1 206 174 180 188 191 204 208 

6 25 -2 907 531 545 552 555 559 563 

7 27.5 +3 419 309 319 326 331 369 378 

8 27.5 +1 138 80 85 93 97 131 138 

9 27.5 -1 139 81 85 92 96 130 137 

10 27.5 -3 419 308 316 324 328 365 373 

11 29 +3 818 647 657 668 673 692 696 

12 29 +1 156 118 120 124 129 141 146 

13 29 -1 93 64 70 74 77 88 92 

14 29 -3 382 214 216 225 230 267 275 

15 32.5 -1 73 45 47 49 53 66 72 

16 32.5 -3 170 126 128 133 138 164 171 

 

Form Table 4.1, it was found that the performance of the online tuned controller was better than 

the offline tuned controller for durations less than 20 seconds, beyond which the performances 

started deteriorating for some cases. 
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It was also observed from Table 4.1 that the performance of the online tuned controller was 

enhanced with a reduction in the duration of the fixed interval. In the current work, this duration 

is taken as three seconds. The performance of the proposed online tuned controller with gain 

parameters updated after every three seconds was simulated for different temperature settings 

over the entire operating range. The simulation results thus obtained were compared with the 

performance of the offline tuned controller in terms of settling time. The simulation results 

obtained for the online and offline tuned SR-PID controller are presented in Table 4.2.  

Table 4.2   Comparative study of the transient response of SR-PID controller using MFO and improved MFO 

algorithms. 

Cases 
Setpoints 

(°C) 
Error 

MFO MFO IMFO 1 IMFO 2 IMFO 3 EMFO 

Offline  Online Online Online Online Online 

1 22.5 +3 176 129 123 116 111 104 

2 25 -1 206 174 163 156 142 105 

3 27.5 +3 419 309 292 279 265 242 

4 27.5 -3 419 308 294 282 269 245 

5 29 +1 156 118 104 86 79 61 

6 32.5 -3 170 126 121 115 112 107 

 

The results clearly establish a superior performance of the online tuned controller over the offline 

tuned controller. The continuous up-gradation of the gain parameters enabled the online tuned 

controller to provide a more appropriate control action as per the prevailing conditions. As a 

result, settling time was reduced significantly. 

In order to improve the performance of the online tuned controller, the modifications proposed in 

the original MFO algorithm in section 3.5 (Chapter 3) were incorporated. The performances of 

the controllers using IMFO 1, IMFO 2, IMFO 3, and EMFO for updating the controller gains 

during online tuning were simulated for the cases already under consideration. The simulation 

results in terms of settling times are presented in Table 4.2. It is evident from the simulation 

results that each of the proposed modifications has led to improvements in the performance of the 

online tuned controller as compared to the original MFO algorithm. It is observed that IMFO 1 

improved the exploitation by modifying the spiral path, IMFO 2 included a better initial 

population along with a better spiral path, resulting in a faster convergence to better solution in 
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the lesser iterations, whereas IMFO 3 improved exploration by including the better flames. The 

combination of these three modifications (EMFO) demonstrates the best performance as it 

combines the advantages of these three algorithms (IMFO 1, IMFO 2, IMFO 3). Therefore, the 

EMFO algorithm has an optimal initial population using a better spiral path to search around even 

fitter probable candidates for the global optima. This guarantees that optimal controller gains are 

provided at regular intervals to the controller throughout the cycle of the process resulting in a 

substantial reduction in the settling time for all the cases under consideration. A comparison of 

the relative performance of the controllers due to the modifications over the original MFO 

algorithm is presented in Fig. 4.1. 

 

 
Fig. 4.1   Percentage improvement in the performances of SR-PID controller using MFO and improved MFO 

algorithms. 
 

Based on the simulation results in Table 4.2 and the relative performance of the algorithms shown 

in Fig. 4.1, EMFO has been found to be the most efficient in improving the performance of the 

online tuned controller in terms of settling times. A comparison of the EMFO and the original 

MFO algorithms is then made in terms of the number of iterations required by these two 

algorithms to converge to the respective optimum solutions. The number of iterations required by 

these two algorithms after every three seconds to converge to the best controller gains for Cases 2, 

3, 4, and 5 is shown in Fig. 4.2. 

 

4
.6

5

6
.3

2

5
.5

4
.5

5

1
1

.8
6

3
.9

71
0

.0
8

1
0

.3
4

9
.7

1

8
.4

4

2
7

.1
2

8
.7

31
3

.9
5

1
8

.3
9

1
4

.2
4

1
2

.6
6

3
3

.0
5

1
1

.1
1

1
9

.3
8

3
9

.6
6

2
1

.6
8

2
0

.4
5

4
8

.3
1

1
5

.0
8

0

10

20

30

40

50

60

C A S E  1 C A S E  2 C A S E  3 C A S E  4 C A S E  5 C A S E  6

IM
P

R
O

V
EM

EN
T 

(%
)

TEMPERATURE SETPOINTS (°C)

IMFO 1 (online) over MFO (online) IMFO 2 (online) over MFO (online)

IMFO 3 (online) over MFO (online) EMFO (online) over MFO (online)



Chapter 4                      Performance Evaluation of Online Tuned Variable Range SR-PID Controller 

 

Page | 95  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a
) 



Chapter 4                      Performance Evaluation of Online Tuned Variable Range SR-PID Controller 

 

Page | 96  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b
) 



Chapter 4                      Performance Evaluation of Online Tuned Variable Range SR-PID Controller 

 

Page | 97  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

             

 

 

 

 

(c
) 



Chapter 4                      Performance Evaluation of Online Tuned Variable Range SR-PID Controller 

 

Page | 98  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

. 
4

.2
  

 R
eq

u
ir

ed
 n

u
m

b
er

 o
f 

it
er

at
io

n
s 

af
te

r 
ev

er
y
 3

 s
ec

o
n
d
s 

o
f 

a 
ti

m
e 

in
te

rv
al

 f
o

r 
th

e 
ca

se
s:

 (
a)

 C
as

e 
2

, 
(b

) 
C

as
e 

3
, 

(c
) 

C
as

e 
4

, 
(d

) 
C

as
e 

5
. 

 

 
(d

) 



Chapter 4                      Performance Evaluation of Online Tuned Variable Range SR-PID Controller 

 

Page | 99  
 

It is clear from Fig. 4.2 that EMFO converged to the best solution in a smaller number of 

iterations as compared to the original MFO for each update in every case. This establishes that of 

all the proposed algorithms, EMFO provides the best solutions in a smaller number of steps as 

compared to the original MFO. 

Further, the investigations were made to study the effect of dead time in the valve and process 

disturbance on the performance of the online tuned controller. The performances of the controller 

are also studied in terms of utility consumption. These investigations also included a comparison 

of the performance of the proposed EMFO and the original MFO in updating the controller gains 

of the online tuned controller for these conditions. 

4.2.1   Effect of system dynamics 

The system performance was checked with dead times (considering a dead time of 0, 0.25, and 

0.5 seconds in the valve). Further, a comparison was made for the transient performance (in terms 

of Ts) of the SR-PID controller for the various temperature setpoints using the original MFO 

(offline and online tuning approach) and EMFO (online tuning approach) algorithms with and 

without dead time is shown in Tables 4.3–4.5.  

Table 4.3   Performances of SR-PID controller using MFO and EMFO algorithms with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with no dead time) Improvement (%) 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 176 129 104 26.70 40.91 

2 22.5 +1 75 47 40 37.33 46.67 

3 25 +3 245 181 139 26.82 43.27 

4 25 +1 85 58 42 31.76 50.59 

5 25 -1 206 174 105 15.53 49.03 

6 25 -2 907 531 448 41.46 50.61 

7 27.5 +3 419 309 242 26.25 42.24 

8 27.5 +1 138 80 56 42.03 59.42 

9 27.5 -1 139 81 58 41.73 58.27 

10 27.5 -3 419 308 245 26.49 41.53 

11 29 +3 818 647 552 20.90 32.52 

12 29 +1 156 118 61 24.36 60.89 

13 29 -1 93 64 49 31.18 47.31 

14 29 -3 382 214 176 43.98 53.93 

15 32.5 -1 73 45 38 38.36 47.95 

16 32.5 -3 170 126 107 25.88 37.06 
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Table 4.4   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with a dead time of 0.25 second) Improvement (%) 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 199 148 115 25.63 42.21 

2 22.5 +1 87 56 46 35.63 47.13 

3 25 +3 282 213 156 26.07 44.68 

4 25 +1 99 70 50 29.29 49.49 

5 25 -1 254 196 123 22.83 51.57 

6 25 -2 1110 594 478 46.49 56.94 

7 27.5 +3 511 352 267 31.12 47.75 

8 27.5 +1 157 93 68 40.76 56.69 

9 27.5 -1 158 92 69 41.77 56.33 

10 27.5 -3 512 349 269 31.84 47.46 

11 29 +3 1016 702 587 30.91 42.22 

12 29 +1 171 131 78 23.39 54.39 

13 29 -1 107 76 57 28.97 46.73 

14 29 -3 461 247 192 46.42 58.35 

15 32.5 -1 86 52 44 39.53 48.84 

16 32.5 -3 198 147 117 25.76 40.91 

 

 

Table 4.5   Performances of SR-PID controller using MFO and EMFO algorithms with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with a dead time of 0.5 second) Improvement (%) 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 244 181 131 25.82 46.31 

2 22.5 +1 98 68 55 30.61 43.88 

3 25 +3 345 254 179 26.38 48.12 

4 25 +1 108 85 62 21.29 42.59 

5 25 -1 314 247 143 21.34 54.46 

6 25 -2 1358 713 519 47.49 61.78 

7 27.5 +3 629 425 293 32.43 53.42 

8 27.5 +1 176 112 84 36.36 52.27 

9 27.5 -1 180 110 86 38.89 52.22 

10 27.5 -3 632 421 295 33.39 53.32 

11 29 +3 1262 918 633 27.26 49.84 

12 29 +1 212 155 101 26.89 52.36 

13 29 -1 122 90 68 26.23 44.26 

14 29 -3 556 308 215 44.60 61.33 

15 32.5 -1 94 61 52 35.11 44.68 

16 32.5 -3 243 183 133 24.69 45.27 
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Based on the simulation results, it can be said from Tables 4.3–4.5 that the SR-PID controller 

tuned online with the EMFO algorithm outperforms the controller with the original MFO 

algorithm (offline and online tuning approaches). Dead time in the valve makes it take longer for 

the manipulated variables to change. Because of this, the system will react slowly leading to 

longer settling times in all circumstances when compared to a system with no dead time. It can be 

seen from the simulation results that as the dead time of the valve increases, the settling times 

increase. However, the controller tuned online using the EMFO algorithm exhibits a superior 

performance as compared to the controller tuned online using the original MFO algorithm. 

4.2.2   Effect of process disturbance 

The system under consideration was then checked for the effect of disturbance (considered as 

impulse function in the forward path in the process at t=30 seconds) on the controller performance 

using impulse function. The performances of the controller using MFO and EMFO was tested and 

compared for the above-considered temperature setpoints in terms of settling time, as shown in 

Tables 4.6–4.8. 

Table 4.6   Performances of SR-PID controller using MFO and EMFO algorithms with disturbance. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

Improvement (%) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 189 132 106 27.16 43.92 

2 22.5 +1 85 49 40 42.35 52.94 

3 25 +3 262 185 141 30.39 46.18 

4 25 +1 97 60 43 38.14 55.67 

5 25 -1 259 180 108 30.50 58.30 

6 25 -2 976 545 454 44.16 53.48 

7 27.5 +3 445 316 245 28.99 44.94 

8 27.5 +1 159 83 57 47.79 64.15 

9 27.5 -1 160 85 59 46.86 63.13 

10 27.5 -3 442 317 249 28.28 43.67 

11 29 +3 864 656 557 24.07 35.53 

12 29 +1 192 123 62 35.94 67.71 

13 29 -1 106 67 50 36.79 52.83 

14 29 -3 405 219 179 45.93 55.80 

15 32.5 -1 82 47 39 42.68 52.44 

16 32.5 -3 181 129 109 28.73 39.78 
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Table 4.7   Performances of SR-PID controller using MFO and EMFO algorithms with disturbance and a dead time 

of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with a dead time of 0.25 second) Improvement (%) 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 213 153 118 28.17 44.61 

2 22.5 +1 98 59 47 39.81 52.04 

3 25 +3 301 219 159 28.54 47.18 

4 25 +1 112 74 52 33.93 53.57 

5 25 -1 308 204 127 33.77 58.77 

6 25 -2 1180 610 485 48.31 58.91 

7 27.5 +3 538 361 271 32.91 49.63 

8 27.5 +1 179 98 70 45.25 60.89 

9 27.5 -1 180 98 71 45.56 60.56 

10 27.5 -3 536 360 274 32.84 48.88 

11 29 +3 1063 713 593 32.93 44.21 

12 29 +1 208 138 80 33.65 61.54 

13 29 -1 121 81 59 33.06 51.24 

14 29 -3 485 254 196 47.63 59.59 

15 32.5 -1 96 55 46 42.71 52.08 

16 32.5 -3 210 152 120 27.62 42.86 

 

Table 4.8   Performances of SR-PID controller using MFO and EMFO algorithms with disturbance and a dead time 

of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

Valve (with a dead time of 0.5 second) Improvement (%) 

MFO 

Offline (Ts) 

MFO 

Online (Ts) 

EMFO 

Online (Ts) 

MFO (Online) 

over 

MFO(Offline) 

EMFO (Online) 

over 

MFO (Offline) 

1 22.5 +3 260 188 136 28.69 47.69 

2 22.5 +1 111 73 57 34.23 48.65 

3 25 +3 365 262 184 28.22 49.59 

4 25 +1 123 91 66 26.02 46.34 

5 25 -1 370 257 149 30.54 59.73 

6 25 -2 1430 731 528 48.88 63.08 

7 27.5 +3 658 436 299 33.74 54.56 

8 27.5 +1 200 119 88 40.51 56.01 

9 27.5 -1 204 118 90 42.16 55.88 

10 27.5 -3 658 434 302 34.04 54.11 

11 29 +3 1311 931 641 28.99 51.11 

12 29 +1 251 164 105 34.66 58.17 

13 29 -1 138 97 72 29.71 47.83 

14 29 -3 582 317 221 45.53 62.03 

15 32.5 -1 106 66 55 37.74 48.11 

16 32.5 -3 257 190 138 26.07 46.31 
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The results in Tables 4.6–4.8 show that the EMFO algorithm (online tuning approach) provided 

better control performance in the presence of disturbance in the process, as compared to the 

original MFO algorithm (offline and online tuning approach). Based on Tables 4.6–4.8, it can be 

inferred that in the presence of disturbance into the process, the performance of the control system 

in terms of settling time will be influenced, and the system will take longer time to reach the 

desired temperature as compared to the system without disturbance. This time increases further 

when the dead time in the valve increases. 

4.2.3   Utility consumption 

The investigation of the controller performance based on the utility consumption is carried out for 

the above-considered setpoints. The consumption of utility obtained using the controller with 

MFO and EMFO is presented in Tables 4.9–4.14. It can be observed from the simulation results 

that the utility consumption of cold and hot water using SR-PID controller tuned online with 

EMFO algorithm was lesser as compared to controller tuned offline and online with the original 

MFO algorithm.  

Table 4.9   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of valve with no dead time. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 5.11 13.95 4.22 10.63 3.54 8.87 

2 22.5 +1 4.25 8.20 4.01 5.29 3.16 4.42 

3 25 +3 5.85 19.81 4.97 15.20 3.80 12.56 

4 25 +1 5.21 9.65 4.39 5.50 3.68 4.77 

5 25 -1 18.45 7.24 14.22 5.14 10.58 4.65 

6 25 -2 69.49 13.91 41.59 8.39 33.14 6.08 

7 27.5 +3 7.38 34.46 5.48 25.19 4.38 18.41 

8 27.5 +1 5.29 12.59 4.82 7.18 4.09 6.08 

9 27.5 -1 13.58 6.06 7.11 4.73 6.02 4.03 

10 27.5 -3 33.26 7.14 25.07 5.39 18.3 4.08 

11 29 +3 12.58 62.81 10.14 50.33 8.81 40.96 

12 29 +1 6.21 14.01 5.54 10.46 4.62 8.93 

13 29 -1 9.47 5.64 5.67 4.19 4.76 3.51 

14 29 -3 29.49 5.93 17.39 4.31 13.72 3.69 

15 32.5 -1 7.97 4.14 5.12 3.91 4.32 3.07 

16 32.5 -3 13.58 4.92 10.55 4.14 8.74 3.44 
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Table 4.10   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of valve with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 5.45 15.76 4.47 11.9 3.72 9.84 

2 22.5 +1 4.53 9.26 4.25 5.92 3.32 4.91 

3 25 +3 6.24 22.37 5.27 17.02 3.99 13.94 

4 25 +1 5.56 10.9 4.65 6.16 3.86 5.29 

5 25 -1 19.69 8.18 15.07 5.75 11.11 5.16 

6 25 -2 74.14 15.71 44.07 9.39 34.79 6.75 

7 27.5 +3 7.87 38.92 5.81 28.2 4.61 20.43 

8 27.5 +1 5.64 14.22 5.11 8.04 4.29 6.75 

9 27.5 -1 14.49 6.84 7.53 5.31 6.32 4.47 

10 27.5 -3 35.49 8.06 26.57 6.03 19.21 4.53 

11 29 +3 13.42 70.94 10.75 56.34 9.25 45.44 

12 29 +1 6.63 15.82 5.87 11.71 4.85 9.91 

13 29 -1 10.11 6.37 6.01 4.69 5.01 3.89 

14 29 -3 31.46 6.71 18.43 4.82 14.4 4.09 

15 32.5 -1 8.51 4.68 5.43 4.38 4.53 3.41 

16 32.5 -3 14.49 5.56 11.18 4.63 9.17 3.82 

 

 

Table 4.11   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of valve with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 5.98 18.27 4.81 13.52 3.96 11.08 

2 22.5 +1 4.97 10.74 4.57 6.72 3.54 5.52 

3 25 +3 6.84 25.94 5.67 19.33 4.25 15.7 

4 25 +1 6.11 12.64 4.99 7.01 4.11 5.96 

5 25 -1 21.6 9.48 16.21 6.53 11.84 5.81 

6 25 -2 81.33 18.21 47.41 10.67 37.08 7.61 

7 27.5 +3 8.63 45.13 6.25 32.03 4.91 23.02 

8 27.5 +1 6.19 16.49 5.51 9.13 4.57 7.61 

9 27.5 -1 15.89 7.93 8.11 6.02 6.74 5.03 

10 27.5 -3 38.93 9.35 28.58 6.85 20.47 5.11 

11 29 +3 14.72 82.25 11.56 64.01 9.86 51.16 

12 29 +1 7.27 18.34 6.31 13.3 5.17 11.16 

13 29 -1 11.08 7.39 6.47 5.33 5.33 4.38 

14 29 -3 34.51 7.77 19.83 5.48 15.35 4.61 

15 32.5 -1 9.32 5.43 5.84 4.98 4.83 3.84 

16 32.5 -3 15.89 6.45 12.03 5.26 9.77 4.31 
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Table 4.12   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of disturbance. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 5.64 15.51 4.34 11.01 3.62 9.14 

2 22.5 +1 4.69 9.12 4.12 5.48 3.17 4.48 

3 25 +3 6.46 22.03 5.11 15.75 3.88 12.95 

4 25 +1 5.75 10.73 4.51 5.71 3.76 4.92 

5 25 -1 20.38 8.05 14.61 5.32 10.81 4.79 

6 25 -2 80.92 15.47 42.73 8.69 33.85 6.27 

7 27.5 +3 8.15 38.32 5.63 26.1 4.47 18.98 

8 27.5 +1 5.84 14.03 4.95 7.44 4.18 6.27 

9 27.5 -1 15.03 6.74 7.31 4.91 6.15 4.15 

10 27.5 -3 36.73 7.94 25.76 5.58 18.69 4.21 

11 29 +3 13.89 72.35 10.42 52.14 9.01 42.23 

12 29 +1 6.86 15.58 5.69 10.84 4.72 9.21 

13 29 -1 10.46 6.27 5.83 4.34 4.86 3.62 

14 29 -3 32.57 6.59 17.87 4.46 14.01 3.81 

15 32.5 -1 8.81 4.62 5.26 4.05 4.41 3.17 

16 32.5 -3 15.18 5.47 10.84 4.29 8.93 3.55 

 

Table 4.13   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of disturbance and valve with a dead time of 0.25 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 6.07 17.6 4.68 12.49 3.86 10.23 

2 22.5 +1 5.05 10.34 4.45 6.21 3.44 5.09 

3 25 +3 6.95 24.99 5.52 17.86 4.14 14.49 

4 25 +1 6.21 12.17 4.87 6.46 4.01 5.51 

5 25 -1 21.94 9.14 15.78 6.03 11.53 5.36 

6 25 -2 82.62 17.55 46.16 9.85 36.09 7.02 

7 27.5 +3 8.77 43.47 6.09 29.6 4.77 21.24 

8 27.5 +1 6.29 15.88 5.35 8.44 4.45 7.02 

9 27.5 -1 16.15 7.64 7.89 5.56 6.56 4.65 

10 27.5 -3 39.55 9.03 27.83 6.33 19.93 4.71 

11 29 +3 14.96 79.24 11.26 59.13 9.61 47.23 

12 29 +1 7.39 17.67 6.15 12.29 5.03 10.31 

13 29 -1 11.26 7.11 6.31 4.92 5.19 4.04 

14 29 -3 35.06 7.48 19.29 5.06 14.94 4.25 

15 32.5 -1 9.47 5.23 5.69 4.61 4.71 3.54 

16 32.5 -3 16.15 6.21 11.71 4.86 9.51 3.97 
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Table 4.14   Comparative study of the amount of 𝑄1 and 𝑄2 flows using SR-PID controller with MFO (offline and 

online) and EMFO (online) in case of disturbance and valve with a dead time of 0.5 sec. 

Cases 
Setpoints 

(°C) 
Error 

MFO 

Offline 

MFO 

Online 

EMFO 

Online 

uc uh uc uh uc uh 

1 22.5 +3 6.72 20.48 5.09 14.32 4.11 11.48 

2 22.5 +1 5.59 12.04 4.83 7.12 3.67 5.72 

3 25 +3 7.69 29.08 6.01 20.48 4.41 16.26 

4 25 +1 6.86 14.17 5.29 7.42 4.26 6.17 

5 25 -1 24.29 10.63 17.14 6.92 12.26 6.02 

6 25 -2 91.45 20.41 50.13 11.3 38.41 7.87 

7 27.5 +3 9.71 50.59 6.61 33.94 5.08 23.83 

8 27.5 +1 6.96 18.48 5.82 9.67 4.73 7.87 

9 27.5 -1 17.87 8.89 8.57 6.38 6.98 5.21 

10 27.5 -3 43.77 10.48 30.22 7.26 21.2 5.28 

11 29 +3 16.55 92.2 12.22 67.81 10.21 53.01 

12 29 +1 8.17 20.56 6.67 14.09 5.35 11.56 

13 29 -1 12.46 8.28 6.84 5.65 5.52 4.54 

14 29 -3 38.81 8.71 20.97 5.81 15.9 4.78 

15 32.5 -1 10.48 6.09 6.18 5.28 5.01 3.98 

16 32.5 -3 17.87 7.23 12.72 5.57 10.12 4.45 

 

The findings in Tables 4.9–4.14 also demonstrate that when we move upward/ downward in the 

temperature's working range, hot/ cold utility consumption increases for the same desired rise/ fall 

in the temperature. From Tables 4.9–4.11, it can also be seen that the hot and cold utility 

consumptions (uh and uc) increase as the dead time in the valve increases. The utility consumption 

increases further when the system with dead time in the valve is subjected to disturbance (Tables 

4.13–4.14). 

At the end, it can be said from the above discussion that even in case of online tuning, the EMFO 

algorithm outperformed the original MFO, IMFO 1, IMFO 2, and IMFO 3 algorithms. It is due to 

the improved solutions found during the search process in solution space. As a result, the 

algorithm converged fast into the best solution.  

 

In this chapter, MFO algorithm-based online tuning approach was proposed for optimizing the 

gain parameters of the SR-PID controller for temperature control of the mixing process. The 

online tuning approach yielded a better performance as compared to the offline strategy in terms 

of settling time. By varying the MFO scheme (path, initial population, and flame selection) with 
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online tuning approach, a further improvement was observed in the performance. It is pertinent to 

mention that the effect of system dynamics and process disturbance is also taken care of. Further, 

this work can be extended by the performance investigation of the proposed EMFO algorithm in 

the real environment.  
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                                                                                                 Chapter 5 

 

Validation 

This chapter investigates the performances of the online tuned controllers 

in the simulated real environment. The effect of using the EMFO algorithm 

for online tuning of the controller in the simulated real environment is 

studied. An electrical analogous model of the practical environment is 

simulated for investigation by considering several effects (imperfect 

insulation, density, viscosity, and compressibility) found in real-time 

conditions. Further, the system is also investigated with the effect of 

system dynamics, and process disturbance. Moreover, a comparison of the 

performances of variable range SR-PID controller tuned online using 

EMFO algorithm in case of the ideal environment and the practical 

environment is also studied. 

Keeping in view the importance of nature-inspired algorithms and the online tuning approach, 

the MFO algorithm and its enhanced version (EMFO) based online tuned variable range SR-PID 

controller for controlling the temperature of the mixing process were discussed in Chapter 4. The 

results were found encouraging with the proposed EMFO algorithm. Further, the performance of 

the proposed algorithm in the real environment needs to be investigated. The electrical analogous 

model has been established to represent the model of thermal system reliably (Aleksiejuk et al., 

2018; Chen et al., 2015; Gilaber & Paris, 1988). The electrical systems also have the advantages 

of good accuracy, compact size, zero leakage, and low interference. Hence, an electrical 

analogous model was made for validation purposes. 

In this chapter, the performance of the EMFO algorithm was investigated by simulating the real 

environment of the practical system, incorporating the various effects (Gilaber & Paris, 1988) 

seen in real-time situations, namely imperfect insulation, density, viscosity, and compressibility, 

via the electrical analogous system (Vishnoi et al., 2022). Since, both the viscosity and the 

compressibility parameters have a linear relationship with the density, this work considered the 
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effect of imperfect insulation and density. Moreover, the system was also investigated with 

regard to the system dynamics and the disturbance in the process. 

An enhanced moth flame optimization algorithm was proposed for online tuning of the controller 

gains, as discussed in Chapter 4. The simulation results established that the proposed EMFO 

algorithm converged faster to better gain values resulting in improved control actions as 

compared to the original MFO algorithm. The current work aims to investigate the performance 

of the MFO and EMFO algorithms in online tuning of the controller gains for the system under 

consideration in the practical environment. For this, the thermal-electrical analogy was used to 

make an electrical analogous model of the system. This electrical analogous model was then 

modified considering the effects of imperfect insulation and density.  

5.1   Electrical analogous model 

The water tank system can be visualized as a thermal system with the flow of fluid (water) as a 

heat source. The rate at which heat accumulates in the system due to both the inlet fluids are 

expressed as: 

                                                            𝑄1𝑖𝑛 = 𝐺1𝑐𝑃(𝑇1 − 𝑇)                                                     (5.1) 

                                                            𝑄2𝑖𝑛 = 𝐺2𝑐𝑃(𝑇2 − 𝑇)                                                     (5.2) 

where G1 and G2 represent the mass flow rate of the inflowing fluids (kg/sec), 𝑇1 and 𝑇2 signify 

the temperature of the inlet fluids (°C), T is the temperature of outflow from the tank (°C), and 

𝑐𝑃 denotes the specific heat of the fluid (J/kg-°C). 

The rate at which heat is accumulated into the system because of the two inlets is also given by  

                                                       Heat accumulated = 𝐶 
𝑑(𝑇)

𝑑𝑡
                                                  (5.3) 

where C represents the thermal capacitance of the fluid in the tank (J/°C) and is given by 

                                                               𝐶 = 𝑚. 𝑐𝑝                                                                    (5.4) 

where m represents the mass of the fluid in the tank (kg). 

Fig. 5.1 depicts the thermal system for the process used in this study. 
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Fig. 5.1   Mixing Process. 

From Eq. 5.1–5.3, the heat accumulated in the system can be written as 

                                𝐺1𝑐𝑃(𝑇1 − 𝑇) + 𝐺2𝑐𝑃(𝑇2 − 𝑇) =  𝐶
𝑑(𝑇)

𝑑𝑡
                                            (5.5) 

Eq. 5.5 represents a thermal system that can be modeled using an electrical analogy, as seen in 

Table 5.1. 

                                           Table 5.1   Electrical analogous quantities of thermal system. 

Thermal (Unit) Electrical (Unit) 

Heat (J) Charge (C) 

Heat flow rate (J/sec.) Current (A) 

Thermal capacitance (J/°C) Capacitance (F) 

Thermal resistance [°C/(J/sec.)] Resistance (Ω) 

Temperature (°C) Voltage (V) 

 

The fluid that flows from both the inlets is modeled by voltage sources V1 (equivalent to T1) and 

V2 (equivalent to T2) with resistances 1/ 𝐺1𝑐𝑃 and 1/ 𝐺2𝑐𝑃 respectively, as presented in Fig. 5.2. 

The thermal and the equivalent electrical parameters are indicated in standard font style and in 

bold, respectively.  

 

Fig. 5.2   Analogous electrical system.                      

      Inlet 1 

      G1, T1 

Inlet 2 

G2, T2 

         Outlet  
          G, T 𝐶, T 

       1/ 𝐺2 𝑐𝑃        1/ 𝐺1 𝑐𝑃 

 𝑇2 𝑇1 𝐶 = 𝑚𝑐𝑃 

 𝑇 

+ 

− 

 + 

− 

𝑹𝟏 𝑹𝟐 

𝑽𝟏 𝑽𝟐 
C 

V 

 A 
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One of the ends of the thermal capacitance is always connected to the ambient temperature. 

Therefore, the corresponding capacitance in the electrical model has one end connected to the 

reference, i.e., the ground. The system under consideration is assumed to be perfectly insulated 

(infinite thermal resistance). Accordingly, the corresponding resistance in the electrical model is 

also infinite and hence, no resistance is placed in parallel to the capacitance in the electrical 

circuit. 

Mass flow rate can be determined as follows: 

                        Mass flow rate (𝐺) = Density (𝜌) * Volume flow rate (𝑄)                                (5.6) 

Therefore, with the effect of density, Eq. 5.5 can be written as follows: 

                         𝑄1𝜌1𝑐𝑃𝑇1 + 𝑄2𝜌2𝑐𝑃𝑇2 − (𝑄1 + 𝑄2)𝜌𝑐𝑝𝑇 =  𝑉𝜌𝑐𝑝
𝑑(𝑇)

𝑑𝑡
                                    (5.7) 

The temperature has an effect on the density of any fluid. Even in the current work, there is a 

significant variation in the density of water over the considered operating range of temperature 

[22.5 32.5] °C. This variation in density will affect the mass flow rate of water at the two inlets 

which in turn, will have an impact on the actual heat flowing into the system. Therefore, the 

values of 𝐺1 and 𝐺2 in Fig. 5.2 are calculated using the values of density of water at 20°C and 

35°C respectively. Accordingly, the range of values of 𝐺1 and 𝐺2 corresponding to the 

considered range of volume flow rates for 𝑄1 and 𝑄2 are given in Table 5.2. The specific heat of 

water (𝑐𝑝) is taken as 4184 J/(kg-°C). 

 

Table 5.2    𝐺1 and 𝐺2 ranges corresponding to 𝑄1 and 𝑄2. 

Range 

Volume flow rates Mass flow rates 

𝑸𝟏 𝑸𝟐 
𝑮𝟏 

(at T1=20°C and ρ1 = 0.99820 kg/l.) 

𝑮𝟐 

(at T2=35°C and ρ2= 0.994029 kg/l.) 

Min 0.015 l/sec. 0.015 l/sec. 0.01497 kg/sec. 0.01491 kg/sec. 

Max 0.075 l/sec. 0.075 l/sec. 0.07487 kg/sec. 0.07455 kg/sec. 

 

The volume flow rates are manipulated by the controllers to control the temperature of the tank, 

𝑇. The variations in the volume flow rates will affect the mass flow rates 𝐺1 and 𝐺2 which in 

turn, will affect the resistances 𝑅1 and 𝑅2 of the analogous electrical model shown in Fig. 5.2. 
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With constant 𝑉1 and 𝑉2, any change in 𝑅1 and 𝑅2 will affect 𝑉, the voltage at node ‘A’, which 

corresponds to the tank temperature.  

However, in the practical environment, there shall be some heat loss due to imperfect insulation. 

As a result, the net heat flow into the system (heat in – heat out) shall be equal to the algebraic 

sum of heat accumulated and heat loss as given below: 

                             𝐺1𝑐𝑃(𝑇1 − 𝑇) + 𝐺2𝑐𝑃(𝑇2 − 𝑇) =  𝐶
𝑑(𝑇)

𝑑𝑡
+  

𝑇

𝑅
                                          

The above equation can be extended as follow: 

                              𝑄1𝜌𝑐𝑃𝑇1 + 𝑄2𝜌𝑐𝑃𝑇2 − (𝑄1 + 𝑄2)𝜌𝑐𝑝𝑇 =  𝑉𝜌𝑐𝑝
𝑑(𝑇)

𝑑𝑡
+  

𝑇

𝑅
                           (5.8)                    

where,  
𝑇

𝑅
 represents the heat losses from the tank, and R is thermal resistance. 

Accordingly, the analogous electrical system shown in Fig. 5.2 shall be modified as shown in 

Fig. 5.3. Due to imperfect insulation, thermal resistance will no longer be infinite and will have 

some finite value. This is represented in Fig. 5.3 by the resistance R in parallel with the 

capacitance C. The range of 𝐺1 and 𝐺2 will be the same as the considered range of 𝑄1 and 𝑄2 

because the density has been assumed to be independent of temperature and taken as 1.  

  

Fig. 5.3   Analogous electrical system with consideration of imperfect insulation. 

 

Both the flow rates 𝑄1 and 𝑄2 are varied by the controller to regulate the tank temperature, T. 

The variations in 𝑄1 and 𝑄2 will change 𝐺1 and 𝐺2, which will affect the resistances 𝑅1 and 𝑅2 in 

the corresponding electrical circuit model presented in Fig. 5.3.  

       1/ 𝐺2 𝑐𝑃        1/ 𝐺1 𝑐𝑃 

 𝑇2 𝑇1 

𝐶 = 𝑚𝑐𝑃 

 𝑇 
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 + 
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𝑹𝟏 𝑹𝟐 

𝑽𝟏 𝑽𝟐 
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Further, the system considered the effect of density along with the effect of imperfect insulation. 

The net heat flow into the system can be defined as: 

                             𝑄1𝜌1𝑐𝑃𝑇1 + 𝑄2𝜌2𝑐𝑃𝑇2 − (𝑄1 + 𝑄2)𝜌𝑐𝑝𝑇 =  𝑉𝜌𝑐𝑝
𝑑(𝑇)

𝑑𝑡
+  

𝑇

𝑅
                        (5.9) 

Analogous electrical system with consideration of the combined effect will be same as Fig. 5.3. 

The mass flow rates 𝐺1 and 𝐺2 will be determined using the water density values at 20°C and 

35°C respectively, as shown in Table 5.2.  

In the combined effect, 𝐺1 and 𝐺2 will be changed due to the effect of density as well as the 

variations in 𝑄1 and 𝑄2, which will affect the values of 𝑅1 and 𝑅2 in the corresponding 

equivalent electrical system.  

With voltages 𝑉1 and 𝑉2 remaining constant, any change in resistances 𝑅1 and 𝑅2 will impact the 

voltage V at node ‘A’ (corresponding to the tank temperature). 

 

5.2   Results and discussion 

The variable range SR-PID controller was optimized online using the EMFO algorithm to 

regulate the temperature of the mixing process in the simulated practical environment. The 

practical environment was simulated using MATLAB/Simulink by making the electrical 

analogous model considering the effect of imperfect insulation and density. 

In the practical environment (considering the real-time effects, namely imperfect insulation, 

density, and combination of imperfect insulation and density), the steady-state flow rates for the 

considered temperature setpoints will be different in comparison to the flow rates which were 

used previously. However, when we consider the temperature setpoint 32.5°C, the flow rates will 

exceed the limits (0.015 0.075). Therefore, in this chapter, the temperature setpoint 32.5°C was 

not considered. 

By considering these steady-state flow rates using the individual effects, the performance of the 

controller tuned online using the EMFO algorithm in the practical environment was investigated 

for all the considered cases (Table 5.3), and compared with the controller tuned online using the 

original MFO algorithm in the same environment.        

The system was further investigated for the effect of system dynamics (by considering the dead 
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time of 0.25 sec. and 0.5 sec.) and the effect of disturbance in the process (by considering an 

impulse function in the forward path in the process at t=30 sec.). The results obtained with MFO 

and EMFO algorithms in the practical environment were compared in terms of settling time 𝑇𝑠 

(sec.), as shown in Tables 5.3–5.5. 

Table 5.3   Practical environment-based (with the effect of imperfect insulation) performances of SR-PID controller 

optimized online using MFO and EMFO algorithms. 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of  

0.5 sec. 
With disturbance 

MFO EMFO MFO EMFO MFO EMFO MFO EMFO 

1 22.5 +3 137 111 157 123 191 140 135 109 

2 22.5 +1 50 43 59 49 72 59 50 41 

3 25 +3 190 147 223 165 265 189 189 145 

4 25 +1 62 45 74 54 90 67 61 44 

5 25 -1 166 98 185 115 237 133 176 104 

6 25 -2 514 433 576 461 693 499 538 448 

7 27.5 +3 324 255 368 282 443 311 322 250 

8 27.5 +1 85 60 98 73 118 90 85 59 

9 27.5 -1 77 54 87 64 104 80 83 57 

10 27.5 -3 293 231 333 254 403 278 312 245 

11 29 +3 665 568 721 605 939 654 664 563 

12 29 +1 124 66 138 84 163 109 125 64 

13 29 -1 61 46 72 53 85 63 66 48 

14 29 -3 206 168 237 183 297 205 216 175 

 

Table 5.4   Practical environment-based (with the effect of density) performances of SR-PID controller optimized 

online using MFO and EMFO algorithms. 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of  

0.5 sec. 
With disturbance 

MFO EMFO MFO EMFO MFO EMFO MFO EMFO 

1 22.5 +3 131 107 151 118 184 135 134 107 

2 22.5 +1 48 41 57 47 70 57 50 40 

3 25 +3 183 143 216 160 258 184 187 143 

4 25 +1 59 43 72 52 88 65 61 43 

5 25 -1 171 101 192 118 243 137 177 106 

6 25 -2 525 441 586 470 702 509 540 450 

7 27.5 +3 311 248 355 274 429 302 319 248 

8 27.5 +1 81 58 95 70 115 87 83 58 

9 27.5 -1 80 56 90 67 108 83 84 58 

10 27.5 -3 306 240 347 263 417 287 313 246 

11 29 +3 654 560 711 596 929 644 660 561 

12 29 +1 120 64 134 81 159 105 125 63 

13 29 -1 63 48 74 55 87 65 66 49 

14 29 -3 211 173 244 189 305 211 216 177 
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Table 5.5   Practical environment-based (with the combined effect of imperfect insulation and density) 

performances of SR-PID controller optimized online using MFO and EMFO algorithms. 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of  

0.5 sec. 
With disturbance 

MFO EMFO MFO EMFO MFO EMFO MFO EMFO 

1 22.5 +3 139 113 159 125 193 143 136 110 

2 22.5 +1 51 44 60 50 73 60 51 41 

3 25 +3 192 150 225 168 268 193 190 146 

4 25 +1 63 46 75 55 92 69 62 44 

5 25 -1 164 96 183 113 234 131 174 103 

6 25 -2 510 428 573 456 690 494 535 445 

7 27.5 +3 326 258 371 285 446 313 324 252 

8 27.5 +1 86 61 99 74 120 92 86 60 

9 27.5 -1 76 53 86 63 102 78 82 56 

10 27.5 -3 291 229 331 251 401 275 310 243 

11 29 +3 668 573 724 610 943 659 667 566 

12 29 +1 125 68 140 86 165 112 127 65 

13 29 -1 60 45 71 52 84 62 65 47 

14 29 -3 204 166 235 181 295 202 215 174 

 

It is clear from the simulation results in Tables 5.3–5.5 that even in the practical environment, 

the EMFO algorithm outperforms the original MFO algorithm in online tuning of the controller 

(in all the cases under consideration) because it combines the benefits of three modifications 

(change the spiral path, opposition learning-based initialization, and change in flames selection) 

in the original MFO algorithm. Due to this combination, the proposed EMFO algorithm has good 

initial search agents using a better spiral path to explore good-performing candidates in the 

search space, leading to the best solution with a faster convergence rate. This guarantees that 

appropriate controller gains are given to the controller at a definite time interval throughout the 

process cycle, resulting in a substantial decrease in settling time for the cases considered in 

Tables 5.3–5.5. 

In the simulated practical environment, the controller gains were updated after every three 

seconds. A comparison was also made between the EMFO and the original MFO algorithms on 

the basis of the number of iterations required after every three seconds to converge to the 

respective best solutions. The number of iterations required to converge after every three seconds 

by both the algorithms in Cases 5, Case 7, Case 10, and Case 12 (combined effect of imperfect 

insulation and density with zero dead time) is shown in Fig. 5.4. 
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It can be observed from Fig. 5.4 that even in case of the practical environment, the EMFO 

algorithm converged to the optimal solution in fewer iterations in comparison to the original 

MFO algorithm for each updating. It is also clear that the updating of the controller gains in case 

of the EMFO algorithm stops much earlier as compared to the original MFO algorithm. This 

happens because the system settles to the new setpoint earlier in case of the EMFO algorithm due 

to better gain values. 

The simulation results clearly establish the superiority of the EMFO algorithm in tuning the 

controller as compared to the original MFO algorithm even in the practical environment. On an 

average, improvement in EMFO over MFO was observed as 24.65% (with no dead time), 

25.38% (with a dead time of 0.25 sec.), 28.64% (with a dead time of 0.5 sec.), and 26.07% (with 

disturbance) in case of the ideal environment (shown in Chapter 4), whereas in the practical 

environment, it has been observed as 24.56% (with no dead time), 25.15% (with a dead time of 

0.25 sec.), 28.37% (with a dead time of 0.5 sec.), and 25.79% (with disturbance). Hence, the 

improvement observed due to the proposed EMFO algorithm over the original MFO algorithm is 

comparable in the ideal and practical environment. However, for the same optimization 

algorithm, the settling times were influenced by the environment.  

Therefore, an investigation was made to study the effect of imperfect insulation, the effect of 

density, and the combined effect of imperfect insulation and density on the settling times. The 

settling times obtained from the simulation of the performance of the system in the practical 

environment were compared with results for the ideal environment (constant density=1 kg/l. and 

perfectly insulated tank).       

5.2.1   Effect of imperfect insulation 

A comparison of the settling times for the system with imperfect insulation and the ideal 

environment is presented in Table 5.6. It is clear from Table 5.6 that due to imperfect insulation, 

the settling times of the system have increased for the increasing setpoints and decreased for the 

decreasing setpoints. This definite pattern in the table is observed due to the heat losses ( 
𝑇

𝑅
 in Eq. 

5.8) from the system on account of imperfect insulation. At the initial temperature (when the 

flow rates are at their steady-state values), there will be constant heat losses from the system.      
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Table 5.6   Performances of SR-PID controller tuned online using EMFO algorithm in case of the ideal environment 

and the practical environment (with the effect of imperfect insulation). 

When the temperature is increased from its setpoint, heat losses ( 
𝑇

𝑅
 ) from the system will be 

increased. The heat outflow from the system will be decreased in comparison to the system with 

perfect insulation due to the slow rise in temperature, as per Eq. 5.8. This slow rise in 

temperature is because of heat losses. Although, the heat outflow has decreased, but because of 

the excessive heat losses due to imperfect insulation, the net heat accumulated into the system 

will be less as compared to the system with perfect insulation.  

The graphs for deviation in heat inflow, deviation in heat outflow, deviation in heat losses due to 

insulation, and the deviation in heat stored are shown in Fig. 5.5 (considered the cases for a 

system with zero dead time). ‘Deviation in heat inflow’ represents the difference in heat inflows 

in cases of perfect insulation and imperfect insulation. In the beginning, the deviation in heat 

inflows is zero due to the same heat inflows in both cases. The same heat inflows are observed in 

the initial part in spite of the different controller outputs in the two cases as the magnitude of the 

controller outputs in both cases are such that the volume flow rates are restricted to saturation 

levels. After some time, the deviation in heat inflows exists due to the variation in the mass flow 

rates, as clearly shown in Fig. 5.5(b). ‘Deviation in heat outflow’ indicates the difference in heat 

outflows in the two cases (perfect insulation and imperfect insulation). It exists from the 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of 

 0.5 sec. 
With disturbance 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

1 22.5 +3 104 111 115 123 131 140 106 109 

2 22.5 +1 40 43 46 49 55 59 40 41 

3 25 +3 139 147 156 165 179 189 141 145 

4 25 +1 42 45 50 54 62 67 43 44 

5 25 -1 105 98 123 115 143 133 108 104 

6 25 -2 448 433 478 461 519 499 454 448 

7 27.5 +3 242 255 267 282 293 311 245 250 

8 27.5 +1 56 60 68 73 84 90 57 59 

9 27.5 -1 58 54 69 64 86 80 59 57 

10 27.5 -3 245 231 269 254 295 278 249 245 

11 29 +3 552 568 587 605 633 654 557 563 

12 29 +1 61 66 78 84 101 109 62 64 

13 29 -1 49 46 57 53 68 63 50 48 

14 29 -3 176 168 192 183 215 205 179 175 
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beginning due to the decrease in heat outflow in case of imperfect insulation. ‘Deviation in heat 

losses due to insulation’ represents the difference in heat losses in the system with perfect 

insulation (no heat loss) and the system with imperfect insulation. 

  

                                          (a)                                                                                                          (b) 

   

                                          (c)                                                                                                          (d) 

Fig. 5.5   Heat deficit in the case of the effect of imperfect insulation in various cases: (a) 22.5°C -25.5°C, (b) 25°C -

28°C, (c) 27.5°C -30.5°C, and (d) 29°C -32°C.  
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The deviations in heat inflows, heat outflows, and heat losses due to the insulation describe the 

quantity of heat deficit in the case of imperfect insulation. This heat deficit (shaded portion) in 

the system can be calculated as follows:   

𝐻𝑒𝑎𝑡 𝑑𝑒𝑓𝑖𝑐𝑖𝑡

= [(𝐴𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒𝑠: 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑖𝑛𝑓𝑙𝑜𝑤𝑠 𝑎𝑛𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠)

− 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠𝑒𝑠] 

Further, the same heat will be required to be accumulated into the system for achieving the 

desired temperature setpoints. As a result, the system with imperfect insulation will take more 

time to reach desired temperature setpoints, as compared to the system with perfect insulation. 

The heat deficit in various cases is shown in Fig. 5.5. It can be seen in the figure that the total 

heat deficit increases with an increase in temperature setpoints while considering the same value 

of error. As a result, the system will take more time to accumulate the required heat as shown in 

Table 5.6.                        

Similarly, for decreasing temperature setpoints, the deviations in heat inflows, heat outflows, and 

heat losses due to insulation are shown in Fig. 5.6.  

  

                                         (a)                                                                                                           (b) 
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   (c) 

Fig. 5.6. Heat accumulation in the case of the effect of imperfect insulation in various cases: (a) 29°C -26°C, (b) 

27.5°C -24.5°C, and (c) 25°C -23°C. 

 

The heat outflow from the system will be decreased. Due to decrement in the heat outflow, the 

system will store more heat as compared to the system with perfect insulation, but due to the 

excessive heat losses on account of imperfect insulation, the net heat accumulated into the 

system will be less as compared to the system with perfect insulation. Consequently, the time 

taken will be less as compared to the system with perfect insulation. Hence, the system with 

imperfect insulation will take less time to attain the desired temperature setpoint.  

5.2.2   Effect of density 

In contrast to the results obtained with the ideal environment assuming density (equal to 1), the 

settling times achieved from the practical model are found to be increased for increasing 

temperature setpoints and decreased for decreasing temperature setpoints, as shown in Table 5.7. 

These variations in settling times are due to the effect of the water density in the practical model. 

A comparison of the performances obtained with the practical environment and the ideal 

environment is shown in Table 5.7. As the temperature is raised above the setpoint, the controller 

first reduces the cold-water volume flow rate to the lower saturation limit and then increases the 

hot water volume flow rate (if necessary). This leads to a decrease in the cold-water mass flow 

rate and a rise in the hot water mass flow rate from its initial steady-state values, respectively. 



Chapter 5                                                                                                                                      Validation 

Page | 125  
 

Table 5.7   Performances of SR-PID controller tuned online using EMFO algorithm in case of the ideal environment 

and the practical environment (with the effect of density). 

Considering the effect of density in the practical model (the density of cold water and hot water 

is less than 1), it is observed from Eq. 5.7 that the total inlet mass flow rate due to cold water and 

hot water will be decreased, when volumetric flow rates are at their saturation limits. As the heat 

flow rate depends on the mass flow rate, the heat inflow (as per Eq. 5.7) will be lower as 

compared to the system assuming water density to be the same (equal to 1). Similarly, heat 

outflow from the system will be decreased. Due to the effect of density, the deviation in heat 

inflows is more than the deviation in heat outflows. As a result, the heat accumulated in the 

system would be less, as compared to the system assuming constant density (equal to 1).  

The graphs for deviations in heat inflows and heat outflows are shown in Fig. 5.7. The deviation 

indicates the difference in heat flows in cases of the system with constant density and the system 

with the effect of density. In Fig. 5.7, the area between the curves: the deviation in heat inflows, 

and the deviation in heat outflows describe the quantity of heat deficit in case of the effect of 

density. Further, the same heat will be required to be accumulated for achieving the desired 

temperature setpoints. As a result, the system with the effect of density will take more time to 

reach desired temperature setpoints, as compared to the system assuming constant water density. 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of 

 0.5 sec. 
With disturbance 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

1 22.5 +3 104 107 115 118 131 135 106 107 

2 22.5 +1 40 41 46 47 55 57 40 40 

3 25 +3 139 143 156 160 179 184 141 143 

4 25 +1 42 43 50 52 62 65 43 43 

5 25 -1 105 101 123 118 143 137 108 106 

6 25 -2 448 441 478 470 519 509 454 450 

7 27.5 +3 242 248 267 274 293 302 245 248 

8 27.5 +1 56 58 68 70 84 87 57 58 

9 27.5 -1 58 56 69 67 86 83 59 58 

10 27.5 -3 245 240 269 263 295 287 249 246 

11 29 +3 552 560 587 596 633 644 557 561 

12 29 +1 61 64 78 81 101 105 62 63 

13 29 -1 49 48 57 55 68 65 50 49 

14 29 -3 176 173 192 189 215 211 179 177 
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                                       (a)                                                                                                            (b) 

  

                                        (c)                                                                                                           (d) 

Fig. 5.7   Heat deficit in the case of the effect of density in various cases: (a) 22.5°C -25.5°C, (b) 25°C -28°C, (c) 

27.5°C -30.5°C, and (d) 29°C -32°C. 

 

The heat deficit in several cases is shown in Fig. 5.7. It is clear from the figure that the total heat 

deficit increases with an increase in temperature while considering the same value of error. As a 
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result, more heat will be required to be accumulated in the tank for the same, and the system will 

take more time while increasing the temperature setpoints for the same error value, as shown in 

Table 5.7.       

Similarly, for decreasing temperature setpoints, the deviations in heat inflows and heat outflows 

are shown in Fig. 5.8.  

  
                                        (a)                                                                                                             (b) 

 
   (c) 

Fig. 5.8   Heat accumulation in the case of the effect of density in various cases: (a) 29°C -26°C, (b) 27.5°C -24.5°C, 

and (c) 25°C -23°C. 
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For decreasing temperature setpoints, the controller first decreases the hot water volume flow 

rate to the least level and then increases the cold-water volume flow rate (if necessary). By 

considering the effect of density, as per Eq. 5.7, the heat inflow and the heat outflow will be 

decreased in comparison to the system assuming constant density. The deviation in heat inflows 

is more than the deviation in heat outflows. This is because of the effect of density. As a result, 

the net heat accumulated in the system will be less as compared to the system with constant 

density, and for the same heat dissipation, the system will take less time to reach desired 

temperature setpoints, as shown in Table 5.7. 

5.2.3   Effect of combination of imperfect insulation and density 

Due to the combined effect of imperfect insulation and density in the system, the settling times 

are found to be increased for increasing temperature setpoints and decreased for decreasing 

temperature setpoints. A comparative study of the settling times obtained for the system with the 

combined effect of imperfect insulation and density, and the system with the ideal environment, 

is shown in Table 5.8.  Temperature affects the density of any fluid. The mass flow rate of water 

at the two inlets will be affected by a change in density, which will have an effect on the actual 

heat flowing into the system. 

 
Table 5.8   Performances of SR-PID controller tuned online using EMFO algorithm in case of the ideal environment 

and the practical environment (with the combined effect of imperfect insulation and density). 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of  

0.25 sec. 

With a dead time of 

 0.5 sec. 
With disturbance 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

1 22.5 +3 104 113 115 125 131 143 106 110 

2 22.5 +1 40 44 46 50 55 60 40 41 

3 25 +3 139 150 156 168 179 193 141 146 

4 25 +1 42 46 50 55 62 69 43 44 

5 25 -1 105 96 123 113 143 131 108 103 

6 25 -2 448 428 478 456 519 494 454 445 

7 27.5 +3 242 258 267 285 293 313 245 252 

8 27.5 +1 56 61 68 74 84 92 57 60 

9 27.5 -1 58 53 69 63 86 78 59 56 

10 27.5 -3 245 229 269 251 295 275 249 243 

11 29 +3 552 573 587 610 633 659 557 566 

12 29 +1 61 68 78 86 101 112 62 65 

13 29 -1 49 45 57 52 68 62 50 47 

14 29 -3 176 166 192 181 215 202 179 174 
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When the setpoints are to be increased from the initial temperature, the controller first decreases 

the volume flow rate of the cold water to the minimum value and then if required, increases the 

volume flow rate of the hot water. This will result in a decrease in the mass flow rate of the cold 

water and an increase in the mass flow rate of the hot water, respectively. As the density of cold 

water is more than that of hot water, the rate of contribution of heat inflows due to the cold water 

and hot water will be different. The total heat inflow (as per Eq. 5.9) will be lower due to the 

effect of density in the combined effect as compared to the system with constant water density 

(equal to 1 kg/l.) and perfect insulation. Similarly, the heat outflow (as per Eq. 5.9) from the 

system will be decreased due to the effect of density and the slow rise in temperature (due to heat 

loss). The density for the outflow is fixed as per the initial temperature. The heat losses from the 

system due to the imperfect insulation will be increased by increasing the temperature from its 

setpoint. Due to decrement in the heat inflow and the heat outflow, the system ideally should 

store heat, but because of heat losses due to imperfect insulation, the net heat accumulated into 

the system decreases as compared to the system with constant density and perfect insulation.  

The graphs for the deviations in heat inflows, heat outflows, and heat losses due to insulation are 

shown in Fig. 5.9, which describe the quantity of heat deficit (shaded portion) in case of the 

combined effect of imperfect insulation and density.  

  

                                          (a)                                                                                                           (b) 



Chapter 5                                                                                                                                      Validation 

Page | 130  
 

  

                                         (c)                                                                                                           (d) 

Fig. 5.9   Heat deficit in the case of the combined effect in various cases: (a) 22.5°C -25.5°C, (b) 25°C -28°C, (c) 

27.5°C -30.5°C, and (d) 29°C -32°C. 

The heat deficit can be calculated as follow: 

𝐻𝑒𝑎𝑡 𝑑𝑒𝑓𝑖𝑐𝑖𝑡

= [(𝐴𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒𝑠: 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑖𝑛𝑓𝑙𝑜𝑤𝑠 𝑎𝑛𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝑠)

− 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 ℎ𝑒𝑎𝑡 𝑙𝑜𝑠𝑠𝑒𝑠] 

As a result, the system with the combined effect will take more time to acquire the same heat, as 

compared to the system with constant density and perfect insulation.  

Fig. 5.9 shows the deviations between the practical (system with the combined effect of 

imperfect insulation and density) and an ideal (system with constant density and perfect 

insulation). It is observed from Fig. 5.9 that the total heat deficit increases for same desired rise 

in temperature as one moves from the lower to higher limit of the working range of temperature. 

It is because of the effect of density (different densities being considered), and the slow rise in 

temperature. As a result, the system will take more time to store the required heat while 

increasing the temperature setpoints for the same value of error, as shown in Table 5.8.       
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In the same way, for decreasing temperature setpoints (shown in Fig. 5.10), less heat will be 

accumulated as compared to the system with constant density and perfect insulation. It is because 

of heat losses, a decrease in heat inflow, and a decrease in heat outflow. 

  

                                        (a)                                                                                                            (b) 

 

                                                                                              (c) 

Fig. 5.10   Heat accumulation in the case of the combined effect in various cases: (a) 29°C -26°C, (b) 27.5°C -

24.5°C, and (c) 25°C -23°C. 
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Thus, the same heat will be dissipated at a faster rate from the system for obtaining the desired 

temperature setpoints. As a result, the system with the combined effect of imperfect insulation 

and density will take less time to reach desired temperature setpoints, as compared to the system 

with constant density and perfect insulation. 

Moreover, the investigation of the controller performance is also carried out on the basis of the 

utility consumptions (uc and uh) for the above-considered setpoints in all the circumstances (the 

effect of imperfect insulation, the effect of density, and the combined effect of imperfect 

insulation and density). The utility consumptions obtained using the controller tuned online with 

the EMFO algorithm are shown in Tables 5.9–5.14. These tables provide a comparison of the 

performance of the proposed EMFO algorithm in the ideal environment and the practical 

environment. 

Table 5.9   Comparative study of the amount of flows using SR-PID controller tuned online with EMFO algorithm 

in case of the ideal environment and the practical environment (with the effect of imperfect insulation). 

 

 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of 

0.25 sec. 

With a dead time of 

0.5 sec. 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

uc uh uc uh uc uh uc uh uc uh uc uh 

1 22.5 +3 3.54 8.87 3.79 9.58 3.72 9.84 4.02 10.7 3.96 11.1 4.32 12.2 

2 22.5 +1 3.16 4.42 3.38 4.78 3.32 4.91 3.59 5.35 3.54 5.52 3.87 6.08 

3 25 +3 3.80 12.6 4.07 13.7 3.99 13.9 4.31 15.2 4.25 15.7 4.64 17.3 

4 25 +1 3.68 4.77 3.94 5.15 3.86 5.29 4.17 5.77 4.11 5.96 4.49 6.57 

5 25 -1 10.6 4.65 9.87 4.33 11.1 5.16 10.3 4.75 11.8 5.81 10.8 5.3 

6 25 -2 33.1 6.08 30.9 5.65 34.8 6.75 32.2 6.22 37.1 7.61 33.9 6.95 

7 27.5 +3 4.38 18.4 4.69 19.8 4.61 20.4 4.99 22.2 4.91 23.0 5.36 25.2 

8 27.5 +1 4.09 6.08 4.38 6.54 4.29 6.75 4.64 7.33 4.57 7.61 4.99 8.34 

9 27.5 -1 6.02 4.03 5.6 3.74 6.32 4.47 5.81 4.11 6.74 5.03 6.14 4.59 

10 27.5 -3 18.3 4.08 17.1 3.79 19.2 4.53 17.7 4.17 20.5 5.11 18.7 4.66 

11 29 +3 8.81 40.9 9.44 43.9 9.25 45.4 10.0 49.2 9.86 51.2 10.8 56.1 

12 29 +1 4.62 8.93 4.95 9.6 4.85 9.91 5.25 10.8 5.17 11.2 5.65 12.2 

13 29 -1 4.76 3.51 4.45 3.26 5.01 3.89 4.63 3.58 5.33 4.38 4.87 3.99 

14 29 -3 13.7 3.69 12.8 3.43 14.4 4.09 13.3 3.76 15.4 4.61 14.1 4.2 
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Table 5.10   Comparative study of the amount of flows (in case of disturbance) using SR-PID controller tuned 

online with EMFO algorithm in case of the ideal environment and the practical environment (with the effect of 

imperfect insulation). 

 

Table 5.11   Comparative study of the amount of flows using SR-PID controller tuned online with EMFO algorithm 

in case of the ideal environment and the practical environment (with the effect of density). 

Cases 
Set 

points (°C) 
Error 

With disturbance 

Ideal based Practical based 

uc uh uc uh 

1 22.5 +3 3.62 9.14 3.69 9.31 

2 22.5 +1 3.17 4.48 3.22 4.55 

3 25 +3 3.88 12.95 3.95 13.18 

4 25 +1 3.76 4.92 3.83 5.01 

5 25 -1 10.81 4.79 10.63 4.7 

6 25 -2 33.85 6.27 33.27 6.16 

7 27.5 +3 4.47 18.98 4.55 19.3 

8 27.5 +1 4.18 6.27 4.25 6.38 

9 27.5 -1 6.15 4.15 6.04 4.08 

10 27.5 -3 18.69 4.21 18.36 4.14 

11 29 +3 9.01 42.23 9.17 42.95 

12 29 +1 4.72 9.21 4.81 9.35 

13 29 -1 4.86 3.62 4.77 3.56 

14 29 -3 14.01 3.81 13.76 3.74 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of 

0.25 sec. 

With a dead time of 

0.5 sec. 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

uc uh uc uh uc uh uc uh uc uh uc uh 

1 22.5 +3 3.54 8.87 3.6 9.04 3.72 9.84 3.82 10.1 3.96 11.1 4.1 11.5 

2 22.5 +1 3.16 4.42 3.21 4.51 3.32 4.91 3.41 5.05 3.54 5.52 3.67 5.74 

3 25 +3 3.80 12.6 3.86 12.9 3.99 13.9 4.09 14.3 4.25 15.7 4.4 16.3 

4 25 +1 3.68 4.77 3.74 4.86 3.86 5.29 3.96 5.45 4.11 5.96 4.26 6.2 

5 25 -1 10.6 4.65 10.4 4.56 11.1 5.16 10.8 5.01 11.8 5.81 11.4 5.59 

6 25 -2 33.1 6.08 32.3 5.91 34.8 6.75 33.9 6.56 37.1 7.61 35.8 7.32 

7 27.5 +3 4.38 18.4 4.45 18.8 4.61 20.4 4.73 21.1 4.91 23.0 5.09 23.9 

8 27.5 +1 4.09 6.08 4.16 6.2 4.29 6.75 4.4 6.95 4.57 7.61 4.73 7.91 

9 27.5 -1 6.02 4.03 5.93 3.95 6.32 4.47 6.16 4.34 6.74 5.03 6.51 4.84 

10 27.5 -3 18.3 4.08 18.1 4.1 19.2 4.53 18.7 4.4 20.5 5.11 19.8 4.92 

11 29 +3 8.81 40.9 8.95 41.7 9.25 45.4 9.49 46.7 9.86 51.2 10.2 53.2 

12 29 +1 4.62 8.93 4.69 9.1 4.85 9.91 4.98 10.2 5.17 11.2 5.36 11.6 

13 29 -1 4.76 3.51 4.69 3.44 5.01 3.89 4.88 3.78 5.33 4.38 5.14 4.21 

14 29 -3 13.7 3.69 13.5 3.62 14.4 4.09 14.0 3.97 15.4 4.61 14.9 4.43 
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Table 5.12   Comparative study of the amount of flows (in case of disturbance) using SR-PID controller tuned 

online with EMFO algorithm in case of the ideal environment and the practical environment (with the effect of 

density). 

 

 

Table 5.13   Comparative study of the amount of flows using SR-PID controller tuned online with EMFO algorithm 

in case of the ideal environment and the practical environment (with the combined effect of imperfect insulation and 

density). 

Cases 
Set 

points (°C) 
Error 

With disturbance 

Ideal based Practical based 

uc uh uc uh 

1 22.5 +3 3.62 9.14 3.65 9.21 

2 22.5 +1 3.17 4.48 3.19 4.51 

3 25 +3 3.88 12.95 3.91 13.13 

4 25 +1 3.76 4.92 3.78 4.96 

5 25 -1 10.81 4.79 10.71 4.73 

6 25 -2 33.85 6.27 33.49 6.18 

7 27.5 +3 4.47 18.98 4.51 19.12 

8 27.5 +1 4.18 6.27 4.21 6.32 

9 27.5 -1 6.15 4.15 6.1 4.12 

10 27.5 -3 18.69 4.21 18.54 4.15 

11 29 +3 9.01 42.23 9.14 42.65 

12 29 +1 4.72 9.21 4.76 9.28 

13 29 -1 4.86 3.62 4.81 3.58 

14 29 -3 14.01 3.81 13.9 3.76 

Cases 

Set 

points 

(°C) 

Error 

Without dead time 
With a dead time of 

0.25 sec. 

With a dead time of 

0.5 sec. 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

Ideal 

based 

Practical 

based 

uc uh uc uh uc uh uc uh uc uh uc uh 

1 22.5 +3 3.54 8.87 3.86 9.77 3.72 9.84 4.1 10.9 3.96 11.1 4.4 12.4 

2 22.5 +1 3.16 4.42 3.45 4.87 3.32 4.91 3.66 5.45 3.54 5.52 3.95 6.2 

3 25 +3 3.80 12.6 4.15 13.9 3.99 13.9 4.39 15.5 4.25 15.7 4.73 17.6 

4 25 +1 3.68 4.77 4.02 5.25 3.86 5.29 4.25 5.88 4.11 5.96 4.58 6.7 

5 25 -1 10.6 4.65 9.68 4.25 11.1 5.16 10.1 4.66 11.8 5.81 10.6 5.2 

6 25 -2 33.1 6.08 30.3 5.54 34.8 6.75 31.6 6.1 37.1 7.61 33.2 6.81 

7 27.5 +3 4.38 18.4 4.78 20.2 4.61 20.4 5.09 22.6 4.91 23.0 5.47 25.7 

8 27.5 +1 4.09 6.08 4.47 6.67 4.29 6.75 4.73 7.48 4.57 7.61 5.09 8.51 

9 27.5 -1 6.02 4.03 5.49 3.67 6.32 4.47 5.7 4.03 6.74 5.03 6.02 4.5 

10 27.5 -3 18.3 4.08 16.8 3.72 19.2 4.53 17.4 4.09 20.5 5.11 18.3 4.57 

11 29 +3 8.81 40.9 9.63 44.8 9.25 45.4 10.2 50.2 9.86 51.2 11.0 57.2 

12 29 +1 4.62 8.93 5.05 9.79 4.85 9.91 5.35 11.0 5.17 11.2 5.76 12.4 

13 29 -1 4.76 3.51 4.36 3.2 5.01 3.89 4.54 3.51 5.33 4.38 4.77 3.91 

14 29 -3 13.7 3.69 12.6 3.36 14.4 4.09 13.0 3.69 15.4 4.61 13.8 4.12 
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Table 5.14   Comparative study of the amount of flows (in case of disturbance) using SR-PID controller tuned 

online with EMFO algorithm in case of the ideal environment and the practical environment (with the combined 

effect of imperfect insulation and density). 

 

It can be seen from Tables 5.9–5.14 that when we move downward in the working range of 

temperature, the consumption of cold and hot water utilities (uh and uc) was found to be lesser in 

case of the practical environment as compared to the ideal environment. This is because of the 

individual effects of imperfect insulation, density, and combination of both. Similarly, the 

consumption of the utilities was found to be higher in case of the practical environment as we 

move upward in the working range of temperature. 

The simulation results also show that even in case of the practical environment, when we move 

upward/ downward in the working range of temperature, hot/ cold utility consumption increases 

for the same desired rise/ fall in the temperature. From Tables 5.9, 5.11, and 5.13, it can also be 

observed that the hot and cold utility consumptions increase as the dead time in the valve 

increases. Even in case of disturbance, these utility consumptions increase in all the considered 

cases (Tables 5.10, 5.12, and 5.14). 

 

This chapter investigated the performance of the MFO and EMFO algorithm for continuously 

online updating of the gain parameters of the SR-PID controller in the simulated real 

environment. To validate the simulation results obtained for an ideal environment, the real 

environment of the practical system was simulated by making the electrical analogous model, 

Cases 
Set 

points (°C) 
Error 

With disturbance 

Ideal based Practical based 

uc uh uc uh 

1 22.5 +3 3.62 9.14 3.71 9.35 

2 22.5 +1 3.17 4.48 3.24 4.57 

3 25 +3 3.88 12.95 3.98 13.28 

4 25 +1 3.76 4.92 3.84 5.03 

5 25 -1 10.81 4.79 10.55 4.66 

6 25 -2 33.85 6.27 33.02 6.11 

7 27.5 +3 4.47 18.98 4.59 19.44 

8 27.5 +1 4.18 6.27 4.28 6.43 

9 27.5 -1 6.15 4.15 5.99 4.05 

10 27.5 -3 18.69 4.21 18.21 4.11 

11 29 +3 9.01 42.23 9.24 43.27 

12 29 +1 4.72 9.21 4.85 9.44 

13 29 -1 4.86 3.62 4.73 3.53 

14 29 -3 14.01 3.81 13.65 3.71 
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incorporating several effects considered in practical situations. A comparative study was made 

between the performances of the EMFO algorithm and the original MFO algorithm-based 

controller on the basis of settling time. Further, the system was also investigated for the effect of 

system dynamics and the process disturbance. The results showed the superiority of the EMFO 

algorithm in the online tuning of the controller in comparison to the MFO algorithm in the 

practical environment. As a future scope, this study can be validated on the practical system. The 

work can also be extended by introducing new changes in the MFO algorithm, or by 

hybridization of the MFO algorithm with other nature-inspired algorithms.  
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                                                                                                  Chapter 6 

  

Conclusion and Future Scope 

 
This chapter summarizes the research outcomes and the significant 

contributions of this dissertation. It also provides the future scope for 

improvement of the current research work. 

 

 

6.1   Conclusion 

The current work highlighted the conventional PID controller, a standard split range PID controller, 

and the variable range of split range PID controller for temperature control of a mixing process. 

Initially, the performance of all the control schemes was investigated using a classical Z-N tuning 

method. The simulation results obtained were compared in terms of settling time and steady-state 

error. It was found that the variable range of split range PID controller outperformed conventional 

PID controller as well as a standard split range PID controller in all the scenarios, i.e., the effect of 

dead time in the valve, the effect of disturbance in the process, and utility consumption. The steady-

state error in the case of the variable range SR-PID controller was found to be minimum (equivalent 

to zero) in all the scenarios, as shown in Chapter 2. However, the variable range SR-PID controller 

with the Z-N tuning method produced a response with massive overshoot and a large settling time.  

In order to improve the performance of the variable range SR-PID controller, this work used 

different nature-inspired optimization techniques such as PSO, WOA, and MFO for tuning (offline) 

the controller gains. The simulation results obtained were compared in terms of settling time. Based 

on these simulation results, a comparative study was made for the controller performance using the 

Z-N method, PSO, WOA, and MFO algorithms on the basis of settling time. It was observed that 

the MFO algorithm performed better as compared to all the other nature-inspired algorithms used 

and the Z-N classical method, in all the scenarios, i.e., the effect of dead time in the valve, the effect 

of disturbance in the process, and utility consumption.  
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To further explore the solution space and enhance the performance of the system, various improved 

versions of the moth flame optimization algorithm (change in a spiral path, initial population, and 

flame selection) were proposed for the same. A new version of the MFO (EMFO) algorithm was 

obtained by combining all the three phases of modification and used to tune the SR-PID controller 

in offline mode. To show the efficacy of the proposed variants of the MFO algorithm, the 

performance of the controller using the proposed algorithms was investigated for the different 

temperature setpoints within the working range, and compared with the controller performance 

using the original MFO algorithm in terms of settling time. It was observed that the performance 

with the proposed improved MFO algorithms was better. The results demonstrated that the 

controller using the EMFO algorithm outperformed the original MFO algorithm in all the scenarios.  

Further, an online tuning approach used in this work yielded a better performance as compared to 

the offline strategy in terms of settling time. Usage of the online tuning approach along with the 

enhanced MFO algorithm further improved the results.  

Furthermore, the performance of the MFO and EMFO algorithm was investigated in the real 

environment while the SR-PID controller gain parameters were updated continuously online using 

the same algorithms. To validate the simulation results obtained in an ideal environment, the real 

environment of the practical system was simulated by making the electrical analogous model 

incorporating several effects considered in practical situations. A comparison was made between 

the performances of the EMFO algorithm- and the original MFO algorithm-based controller in 

terms of settling time. The results showed the superiority of the EMFO algorithm in the online 

tuning of the controller as compared to the original MFO algorithm in the practical environment. 

Moreover, the system was also investigated with the effect of system dynamics, process 

disturbance, and utility consumption. 

6.2   Future Scope 

The future scope of the current research work is described below: 

❖ The current work can be extended by considering disturbances in the various sensors that 

are normally used in the feedback path. Also, the effect of the nature of disturbances 

entering into the process can be investigated. 
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❖ The overall working range of a variable split range controller used in the present work can 

be further subdivided in case, more manipulated variables exist in the system. The 

performance of enhanced MFO algorithms in such systems can be a further area of 

investigation. 

❖ The modified MFO algorithm developed in the work can be used for further performance 

enhancement in many real-world engineering problems. 

❖ This research work can be validated on the practical system.  

❖ This work can also be extended by incorporating new modifications in the MFO 

algorithm, or by the hybridization of the MFO algorithm with other nature-inspired 

algorithms for subsequent usage in various applications.   
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Appendix I 

  
Summary of MFO variants: 

 
Table 1   Literature relevant to the MFO variants published in the last decade 

Research Group Methods or modifications Improvement 

Li et al.  

(Li et al., 2021) 

Used opposition learning-based flame 

generation mechanism, Differential 

evolution algorithm, Shuffled frog 

leaping algorithm (SFLA) based local 

search mechanism, and death 

mechanism in MFO algorithm 

Obtained high-quality flames, 

improved the population diversity and 

global search capability, and also 

decreased the probability of the moth’s 

entrapment in local optima   

Ma et al.  

(Ma et al., 2021) 

Introduced an inertia weight of 

diversity feedback control in the MFO 

algorithm and added a small 

probability mutation after position 

updating step 

Overcome the premature convergence 

problems, balanced the global search 

ability and exploitation of the 

algorithm, and improved the 

convergence speed 

Mohanty and Panda  

(Mohanty & Panda, 

2021) 

Changed in the convergence constant 

and the shape of the logarithmic spiral 

value 

Proposed modified MFO algorithm 

promotes exploitation 

Sapre and Mini  

(Sapre & Mini, 2021) 

Proposed differential MFO (DMFO) 

algorithm (hybridization of 

differential evolution and MFO) 

Balanced the exploration and 

exploitation capability of the DMFO 

algorithm 

Shehab et al.  

(Shehab et al., 2021) 

Proposed MFOHC, i.e., hybridization 

of MFO and local-based algorithm 

with hill climbing (HC) approach, and 

also used another six popular selection 

schemes  

Improved the speed of the searching, 

the learning strategy to find the 

generation of search agent solutions, the 

quality of the selected solution, and also 

increased the diversity. 

Suja 

(Suja, 2021) 

Proposed levy flight-based moth flame 

optimization algorithm 

Improved the global searching 

capability of the MFO algorithm and 

maintained the stability of the system 



Appendix I 

Page | 166  
 

Xia et al.  

(Xia et al., 2021) 

Proposed generalized oppositional 

learning-based MFO with crossover 

strategy 

Increased diversity of the population, 

obtained high-quality moths in 

initialization and improved the 

exploitation and exploration capability 

of the MFO algorithm 

Bandopadhyay and 

Roy  

(Bandopadhyay & 

Roy, 2020) 

Used hybrid multi-objective moth 

flame optimization (HMOMFO) 

method, and also integrated PSO and 

levy flight strategy with the MFO 

algorithm 

Enhanced exploitation phase without 

compromising exploration phase and 

obtained the better candidate solution 

Cui et al.  

(Zhiling Cui et al., 

2020) 

Used modified moth flame 

optimization algorithm with adaptive 

Lévy-Flight perturbations 

Improved the ability of global search 

and provided excellent performance in 

terms of escaping from the local 

minima 

Dash et al.  

(Dash et al., 2020) 

Proposed hybridization of JAYA 

algorithm and MFO algorithm 

JMFO algorithm showed faster 

convergence towards the solution 

Dash et al.  

(Dash et al., 2020a) 

Proposed a hybridization of moth 

flame optimization, ant lion 

optimization, and salp swarm 

algorithm 

Improved significantly in performance 

as compared to ALO, MFO, and SSA. 

The suggested hybrid method enabled 

the exploration of the capabilities of 

each algorithm. 

Elattar et al. 

(Elattar & Elsayed, 

2020) 

Proposed a new equation for reducing 

the flame number and convergence 

constant  

Provided an effective balance between 

the exploitation and exploration phase 

and sped up the convergence of the 

algorithm. 

Elaziz et al.  

(Elaziz et al., 2020) 

Used opposition learning theory for 

initialization 

Escaped from entrapment in local 

optima and accelerated the global 

convergence speed 

Fei et al.  

(Fei et al., 2020) 

Proposed the hybridization of fuzzy c-

means (FCM) and the MFO method. 

Provided higher convergent speed and 

thus reduced the energy consumption of 

the network. 
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Helmi and Alenany 

(Helmi & Alenany, 

2020) 

Used Gaussian mutation-based MFO, 

Lévy-fight based MFO, and Cross 

MFO (COMFO), an algorithm based 

on permutation-based problems (PBP) 

Escaped from local minima regions and 

premature convergence 

Kaur et al.  

(Kaur et al., 2020) 

Added Cauchy distribution function, 

and influence of best flame (changes in 

moth updating equation) 

Modification ensured the balancing 

between exploration and exploitation 

and also helped in improving the 

convergence speed  

Korashy et al. 

(Korashy et al., 2020) 

To increase the performance of the 

MFO algorithm, leadership hierarchy 

of the grey wolf optimizer (GWO) 

algorithm was proposed 

Minimized the total operating time of 

relays resulting in the improved optimal 

solution by utilizing the proposed MFO 

algorithm 

Li Yu et al.  

(Li Yu et al., 2020) 

Introduced two new approaches (Lévy 

flight and dimension by-dimension 

evaluation) in the MFO algorithm 

Improved global exploration capability 

and convergence speed and also 

provided an effective balance between 

the local and global search 

Lin et al.  

(Lin et al., 2020) 

Used modified position updating 

equation based on inertia weight and 

applied Cauchy mutation strategy for 

individuals of the moth population 

Improved convergence rate and found 

the optimal global solution with a 

greater probability 

Pelusi et al.  

(Pelusi et al., 2020) 

Changed the moths' positions 

according to their corresponding 

flames, and the best flame is as 

follows: 

Mi k = Di 
k−1.e bt.cos(2πt) + w · Fi k−1 +  

(1 − w) ·Mbest 

Improved exploration and exploitation 

phase 

 

 

 

Reddy and Bojja 

(Reddy & Bojja, 

2020) 

Used hybridization of MFO and 

teaching learning-based optimization 

(TLBO) algorithm  

Improved the proficiency of exploration 

in MFO algorithm and competency of 

exploitation in TLBO algorithm 

Sayed et al.  

(Sayed et al., 2020) 

Proposed binary version of both moth 

flame optimization and whale 

optimization algorithm 

 

Gave the best selection of the features 

using binary MFO algorithm in 

determining clustering while finding 

the highest results regarding external 
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 validity measurements using binary 

WOA 

Sharma and Saha  

(R. Sharma & Saha, 

2020) 

Used hybridization of firefly and moth 

flame algorithm 

Produced less redundant and reduced 

test paths as compared to FA and MFO 

algorithm  

Yu et al.  

(Yu et al., 2020) 

Proposed simulated annealing based 

MFO 

Increased the benefit of the MFO 

algorithm in the local exploitation 

process. 

Zhang Z. et al.  

(Zhang Z. et al., 

2020) 

Used updated formula, the inspiration 

of moth linear flight path and flame 

population update strategy 

Enhanced the ability of the Moth-flame 

optimization algorithm (MFO) to 

overcome falling into the local optimum 

Zhang H. et al. 

(Zhang H. et al., 

2020) 

Proposed Nelder-Mead simplex 

(NMS) and orthogonal learning (OL) 

schemes-based moth flame 

optimization algorithm 

Provided better accuracy and fast 

convergence rate 

Zhao et al.  

(Zhao et al., 2020) 

Flames were generated by orthogonal 

opposition-based learning 

Improved effectiveness of algorithm 

and provided better performance in 

terms of balancing exploration and 

exploitation capabilities as well as 

avoiding local optima 

Buch and Trivedi 

(Buch & Trivedi, 

2019) 

Introduced adaptive moth fame 

optimization algorithm that included 

the step size on the basis of the best 

and worst position of moths as well as 

the current position of moth 

Achieved the optimal solution with a 

faster convergence rate 

 

 

Hongwei et al. 

(Hongwei et al., 

2019) 

Proposed Chaos enhanced MFO 

algorithm. Chaotic maps used in 

initialization population and boundary 

handling components 

Increased the diversity of the 

population 

Jain and Saxena  

(Jain & Saxena, 

2019) 

Used opposition learning theory for 

initialization 

Escaped from entrapment in local 

optima and improved convergence rate 
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Jia et al.  

(Jia et al., 2019) 

Used thresholding heuristic scheme 

that was included in MFO algorithm, 

and also applied the inertia weight in 

moths position updating equation 

Improved convergence speed, 

accuracy, stability, and efficiency,  

Khalilpourazari and 

Khalilpourazary 

(Khalilpourazari & 

Khalilpourazary, 

2019) 

Proposed the hybridization of moth 

flame optimization algorithm (MFO) 

and water cycle algorithm (WCA) 

MFO algorithm was used to enhance 

exploitation, and the WCA algorithm 

was used to enhance exploration 

Li et al.  

(Li et al., 2019) 

Changed in moth updating equation 

for improvement  

Increased the convergence speed and 

improved the search accuracy 

Luo et al.  

(Luo et al., 2019) 

Used elite opposition-based learning 

in the MFO algorithm 

Enhanced diversity of the population 

and its exploration ability 

Rashid et al. 

(Rashid et al., 2019) 

Improved MFO algorithm by a 

different selection of flames 

Improved the ability to guide the search 

direction towards a better solution 

Sapre and Mini  

(Sapre & Mini, 2019) 

Moth flame optimization with Cauchy 

mutation and evolutionary boundary 

constraint handling was presented 

Enhanced the capabilities of 

exploration and exploitation, avoided 

entrapment in local optima, and also 

increased convergence rate 

Sheng et al.  

(Sheng et al., 2019) 

The double flames generation scheme 

was used for producing two distinct 

forms of target flames to guide the 

flight of moths, namely, local flame 

and global flame 

Improved global exploration and local 

exploitation 

Singh et al.  

(Singh et al., 2019) 

Proposed hybridization of Artificial 

neural network (ANN) and MFO 

algorithm 

Overcome the limitations of 

conventional training methods, 

including poor convergence speed and 

local optima stagnation 

Taher et al.  

(Taher et al., 2019) 

Used Archimedean and Hyperbolic 

spiral path 

Attained optimal power flow solution 

with fast convergence 

Wu et al.  

(Wu et al., 2019) 

Used the hybridization of the Levy-

flight scheme and the moth flame 

optimization algorithm 

Improved the global optimization 

ability and converged fast to get the best 

solution 
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Xu Y. et al. 

(Xu Y. et al., 2019) 

Proposed gaussian mutation and 

chaotic based MFO 

Increased population diversity and 

improved solution quality and 

convergence speed 

Xu Y. et al. 

(Xu Y. et al., 2019a) 

Used Lévy mutation (LM), Gaussian 

mutation (GM), Cauchy mutation 

(CM) in the basic MFO algorithm  

Improved neighborhood informed 

capability, global exploration ability, 

and enhanced the randomness of search 

agents’ movement 

Elsakaan et al. 

(Elsakaan et al., 

2018) 

Used the advantages of the original 

MFO algorithm and levy flight 

strategy 

Increased the diversity of the population 

Jangir and Trivedi 

(Jangir & Trivedi, 

2018) 

Used non-dominated sorting moth 

flame optimizer (NSMFO) 

Proved effectiveness on the basis of 

generalized distance and efficiency in 

terms of execution time and obtained 

the optimal solution with faster 

convergence 

Kamalapathi et al. 

(Kamalapathi et al., 

2018) 

Used hybridization of Moth flame 

optimization and fuzzy logic controller 

Improved the dynamic behavior of the 

Brushless DC motor in terms of supply 

voltage and line current harmonics and 

examined the effectiveness of the 

proposed technique 

Li C. et al.  

(Li C. et al., 2018) 

Used dynamic flame guidance (DFG) 

and differential evolution flame 

generation (DEFG) techniques 

Improved convergence speed and 

global search capability 

Li W. K.et al. 

(Li W. K. et al., 

2018) 

Integrated two schemes, namely an 

indicator-based selection scheme and 

an opposition learning-based scheme 

in the MFO algorithm  

Maintained diversity and accelerated 

the convergence 

Reddy et al.  

(Reddy et al., 2018) 

Used the various ways for the selection 

of flames to update the position of the 

last remaining moths 

Improved exploitation capabilities of 

MFO approach, and improved solving 

UC problem 
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Sayed and 

Hassanien  

(Sayed & Hassanien, 

2018) 

Proposed the hybridization of 

simulated annealing and moth flame 

optimization algorithm 

Overcome the limitations of the original 

MFO algorithm, such as slow 

convergence rate and low chances to 

obtain the optimal solution 

Xu L. et al.  

(Xu L. et al., 2018) 

Proposed improved version of moth-

flame optimization algorithm based on 

gaussian mutation and cultural 

learning strategy 

Enhanced exploitation and exploration 

performances 

Anfal and 

Abdelhafid  

(Anfal & Abdelhafid, 

2017) 

Used hybridization of PSO and MFO 

algorithm 

Obtained the best solution by reducing 

the number of PMU installations and 

increasing measurement redundancy. 

Aziz et al.  

(Aziz et al., 2017) 

Used moth-flame optimization (MFO) 

algorithm and whale optimization 

algorithm (WOA) 

The results obtained from MFO were 

superior to WOA, as well as it provided 

an effective balance between 

exploitation and exploration in each 

picture 

Bhesdadiya et al. 

(Bhesdadiya et al., 

2017) 

Used the hybridization of particle 

swarm optimization (PSO) and moth 

flame optimization (MFO) algorithms. 

MFO algorithm was used for 

enhancement in exploration while PSO 

algorithm was utilized for enhancement 

in exploitation 

Gholizadeh et al. 

(Gholizadeh et al., 

2017) 

A new equation was proposed for 

updating the position based on the best 

knowledge gained by the search agents 

Decreased the probability of trapping 

into local optima and improved the 

convergence speed 

Hassanien et al. 

(Hassanien et al., 

2017) 

Reported a hybridization of moth 

flame optimization and rough set 

theory for feature selection 

(MFORSFS) 

Provided better performance by 

choosing the best features describing 

the tomato's leaf in terms of robustness 

and convergence speed  

Jangir  

(Jangir P., 2017) 

Proposed Hybrid Algorithm Particle 

Swarm Optimization-Moth Flame 

Optimizer (HPSO-MFO) method 

Improved convergence speed, also 

addressed power flow concerns 

(reduced fuel cost, enhanced voltage 

profile, and voltage stability, minimized 

active and reactive power losses) 
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Savsani and Tawhid 

(Savsani & Tawhid, 

2017) 

A non-dominated moth flame 

optimization technique was proposed 

The efficacy of the algorithm was tested 

using multi-objective benchmark 

functions and distinctive features, and 

the diversity among the best solutions 

was maintained. 

Wang et al.  

(M. Wang et al., 

2017) 

Used kernel extreme learning 

machine based on the chaotic MFO 

technique 

Improved convergence speed and 

avoids trap into the local optimum. 

Yang et al.  

(W. Yang et al., 

2017) 

An effective approach for short-term 

load forecasting in power system was 

proposed 

  

Enhanced performance by minimizing 

the original data's inherent complexity 

Li et al.  

(Li et al., 2016) 

Used Levy-flight scheme in the moth 

flame optimization algorithm 

Obtained a better trade-off between 

exploration and exploitation, making 

the algorithm more efficient and faster 

Soliman et al. 

(Soliman et al., 2016) 

Used Archimedean and Hyperbolic 

spiral path 

Improved the searching capability and 

convergence speed 

Vikas and Nanda 

(Vikas & Nanda, 

2016) 

Exploration and exploitation phases of 

the MFO algorithm were used for 

archive grid, sorting, and non-

dominance of solutions 

Achieved the best solution and ensured 

effective convergence  
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